ETH Price: $2,943.02 (-0.50%)
 

Overview

Max Total Supply

100,000,000,000 ANTHRAX

Holders

1,467,199

Market

Price

$0.00 @ 0.000000 ETH

Onchain Market Cap

-

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Filtered by Token Holder
plmrx.base.eth
Balance
1,000 ANTHRAX

Value
$0.00
0x0c3EF07338d82406F4E49bcb6DF157B94A3dcD38
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0xb42313A1...A08c34902
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
Virus

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import "./interfaces/ITransactionType.sol";
import "./InfectionManager.sol";
import "./RewardFirstInfection.sol";
import "./RewardWinnerPot.sol";
import "./abstracts/GameAware.sol";
import "./VirusFactory.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Factory.sol";
import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Pair.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

contract Virus is ERC20, GameAware, ITransactionType, ReentrancyGuard {
    IUniswapV2Router02 public immutable uniswap_router;
    address payable public virusFactory;
    address public immutable uniswap_factory;
    address public immutable pairAddressWithWeth;
    address public immutable WETH;
    address public devAddress;
    address public winnerPot;
    address public virusDrop;
    InfectionManager public immutable infectionManager;
    RewardWinnerPot public immutable rewardWinnerPot;
    RewardFirstInfection public immutable rewardFirstInfection;
    
    uint256 public DEV_FEE_PERCENTAGE = 10; // 1% = 10/1000
    uint256 public WINNER_POT_FEE_PERCENTAGE = 15; //1.5% = 15/1000
    uint256 public AFTER_GAME_DEV_FEE_PERCENTAGE = 5; // 0.5% = 5/1000
    uint256 public constant FIRST_INFECTED_FEE_PERCENTAGE = 10; // 1.0% = 10/1000
    uint public constant FEE_DENOMINATOR = 1000;

    uint256 public accumulatedWinnerPotFeeVirus;
    uint256 public accumulatedDevFeeVirus;

    uint256 public slippagePercentage = 50;

    event FeesCollected(
        uint256 winnerPotFee,
        uint256 devFee,
        uint256 firstInfectedFee,
        address firstInfector
    );
    
    event TaxesProcessed(
        uint256 winnerPotAmount,
        uint256 devAmount
    );

    event UniswapStateChanged(
        bool enabled
    );

    constructor(
        string memory name,
        string memory symbol,
        uint initialMint,
        address _rewardWinnerPot,
        address _uniswapFactory,
        address _uniswapRouter,
        address _infectionManager,
        address _rewardFirstInfection,
        address _gameManager,
        address _devAddress,
        address _winnerPot,
        address _weth,
        address _virusDrop
    ) ERC20(name, symbol) GameAware(_gameManager) {
        _mint(msg.sender, initialMint);
        virusFactory = payable(msg.sender);
        rewardWinnerPot = RewardWinnerPot(payable(_rewardWinnerPot));
        uniswap_router = IUniswapV2Router02(_uniswapRouter);
        uniswap_factory = _uniswapFactory;
        rewardFirstInfection = RewardFirstInfection(payable(_rewardFirstInfection));
        infectionManager = InfectionManager(_infectionManager);
        devAddress = _devAddress;
        winnerPot = _winnerPot;
        WETH = _weth;
        pairAddressWithWeth = IUniswapV2Factory(uniswap_factory).createPair(address(this), WETH);
        virusDrop = _virusDrop;
    }

    function _calculateFees(
        address from,
        address to,
        uint256 amount
    ) private returns (uint256 winnerPotFee, uint devFee, address firstInfectorAddress, uint256 firstInfectedFee) {
        bool isActive = gameManager.isGameActive();
        if (isActive) {
            winnerPotFee = amount * WINNER_POT_FEE_PERCENTAGE / FEE_DENOMINATOR;
            devFee = amount * DEV_FEE_PERCENTAGE / FEE_DENOMINATOR;
        } else {
            winnerPotFee = 0;
            devFee = amount * AFTER_GAME_DEV_FEE_PERCENTAGE / FEE_DENOMINATOR;
        }
        if (from == pairAddressWithWeth) {
            (address firstInfector,,bool isFirstInfectionActive) = infectionManager.getFirstInfection(to);
                if (isFirstInfectionActive && firstInfector != address(0)) {
                    firstInfectedFee = (amount * FIRST_INFECTED_FEE_PERCENTAGE) / FEE_DENOMINATOR;
                        firstInfectorAddress = firstInfector;
                }
        }
        emit FeesCollected(winnerPotFee, devFee, firstInfectedFee, firstInfectorAddress);
        return (winnerPotFee, devFee, firstInfectorAddress, firstInfectedFee);
    }

    function processTaxes() external nonReentrant {
        address[] memory path = new address[](2);
        path[0] = address(this);
        path[1] = WETH;

        require(accumulatedWinnerPotFeeVirus > 0 || accumulatedDevFeeVirus > 0, "No fees to process");
        
        if (IERC20(address(this)).allowance(address(this), address(uniswap_router)) == 0) {
            _approve(address(this), address(uniswap_router), type(uint256).max);
        }
        
        if (accumulatedWinnerPotFeeVirus > 0) {
            uint256 amountToSwap = accumulatedWinnerPotFeeVirus;
            accumulatedWinnerPotFeeVirus = 0;
            
            uint256[] memory amountsOut = uniswap_router.getAmountsOut(amountToSwap, path);
            uint256 minAmountOut = amountsOut[1] * (1000 - slippagePercentage) / 1000;
            
            uniswap_router.swapExactTokensForTokensSupportingFeeOnTransferTokens(
                amountToSwap,
                minAmountOut,
                path,
                address(rewardWinnerPot),
                block.timestamp
            );
        }

        if (accumulatedDevFeeVirus > 0) {
            uint256 amountToSwap = accumulatedDevFeeVirus;
            accumulatedDevFeeVirus = 0;
            
            uint256[] memory amountsOut = uniswap_router.getAmountsOut(amountToSwap, path);
            uint256 minAmountOut = amountsOut[1] * (1000 - slippagePercentage) / 1000;
            
            uniswap_router.swapExactTokensForTokensSupportingFeeOnTransferTokens(
                amountToSwap,
                minAmountOut,
                path,
                address(devAddress),
                block.timestamp
            );
        }
    }

    function _isUniswapEnabled() private view returns (bool) {
        VirusFactory factory = VirusFactory(virusFactory);
        return factory.tokens(address(this)) == VirusFactory.TokenState.UNISWAP_ENABLED;
    }

    function _update(
        address from,
        address to,
        uint256 amount
    ) internal virtual override {
        if (from == address(virusDrop)) {
            super._update(from, to, amount);
            return;
        }

        if (from == address(0) || to == address(0)) {
            super._update(from, to, amount);
            return;
        }
        
        bool _isTaxable = true;
        if (_excludedFromTaxes(from) || _excludedFromTaxes(to)) {
            _isTaxable = false;
        }

        if (_isTaxable) {        
            bool isUniswapTrade = from == pairAddressWithWeth ||
            to == pairAddressWithWeth;
            if (isUniswapTrade) {
                if (!_isUniswapEnabled()) {
                    revert("Direct transfers with Uniswap pairs are not allowed until bonding curve is ended");
                }
                TransactionType txType;
                if (from == pairAddressWithWeth) {
                    txType = TransactionType.TOKEN_PURCHASE;
                } else {
                    txType = TransactionType.TOKEN_SELL;
                }
                (uint112 reserve0, uint112 reserve1, ) = IUniswapV2Pair(
                    pairAddressWithWeth
                ).getReserves();
                bool uniswapEnabled = reserve0 > 0 && reserve1 > 0;

                if ((to != address(this)) && uniswapEnabled) {
                    infectionManager.tryInfect(tx.origin, tx.origin, amount, InfectionManager.TransactionType(uint(txType)));
                    (uint256 winnerPotFee, uint256 devFee, address firstInfectorAddress, uint256 firstInfectedFee) = _calculateFees(from, to, amount);
                    uint allFee = winnerPotFee + devFee + firstInfectedFee;
                    amount -= allFee;

                    accumulatedWinnerPotFeeVirus += winnerPotFee;
                    accumulatedDevFeeVirus += devFee;
                    
                    super._update(from, address(this), (winnerPotFee + devFee));
                    
                    if (firstInfectedFee > 0) {
                        rewardFirstInfection.recordVirusDeposit(firstInfectorAddress, firstInfectedFee);
                        super._update(from, address(rewardFirstInfection), firstInfectedFee);
                    }
                }
            } else {
                TransactionType txType = TransactionType.NORMAL_TRANSFER;
                if (to == address(virusFactory)) {
                    txType = TransactionType.TOKEN_SELL;
                }
                
                infectionManager.tryInfect(
                    from, 
                    to, 
                    amount, 
                    InfectionManager.TransactionType(uint(txType))
                );
            }
        }
        super._update(from, to, amount);
    }

    function _excludedFromTaxes(address addr) internal view returns (bool) {
        if (addr == address(this)) return true;
        if (addr == address(winnerPot)) return true;
        if (addr == address(rewardFirstInfection)) return true;
        if (addr == address(devAddress)) return true;
        return false;
    }

    function mint(address to, uint256 amount) external {
        require(msg.sender == virusFactory, "Only virusFactory can mint");
        infectionManager.tryInfect(
            to, 
            to, 
            amount, 
            InfectionManager.TransactionType(uint(TransactionType.TOKEN_PURCHASE))
        );
        _mint(to, amount);
    }

    function burn(uint256 amount) external {
        _burn(msg.sender, amount);
    }

    function airdropTransfer(address from, address to, uint256 amount) external {
        require(msg.sender == virusDrop, "Only virusDrop can call this function");
        infectionManager.tryInfect(
            from,
            to,
            amount,
            InfectionManager.TransactionType(uint(TransactionType.NORMAL_TRANSFER))
        );
    }

    function setSlippagePercentage(uint256 _slippagePercentage) external {
        require(msg.sender == devAddress, "Only the developer can set this.");
        slippagePercentage = _slippagePercentage;
    }
}

File 2 of 29 : ITransactionType.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

interface ITransactionType {
    enum TransactionType {
        NORMAL_TRANSFER,
        TOKEN_PURCHASE,
        TOKEN_SELL
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import "./interfaces/ITransactionType.sol";
import "./abstracts/GameAware.sol";
import "./VirusFactory.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

contract InfectionManager is GameAware, Ownable {
    enum TransactionType {
        NORMAL_TRANSFER,
        TOKEN_PURCHASE,
        TOKEN_SELL
    }

    struct FirstInfection {
        address infector;
        address virusAddress;
        bool isActive;
    }
    
    struct ActiveInfection {
        address infector;
        address virusAddress;
        bool isActive;
        uint256 infectionOrder;
    }

    address payable public virusFactory;
    bool public isVirusFactorySet;
    uint256 public constant ACTIVE_WALLET_CONDITION = 0.005 ether;
    uint256 public constant MAX_VIRUS_COUNT = 30;
    uint256 public constant MIN_INFECTION_AMOUNT = 1000 * 10**18;

    mapping(address => bool) public registeredViruses;
    mapping(address => address[3]) public topInfectorsByVirus;

    //// Wallet Infection Status ////
    // Wallet's first infection status
    mapping(address => FirstInfection) public firstInfection;
    // Wallet's current active infection status
    mapping(address => ActiveInfection) public activeInfection;


    //// Wallet Info ////
    mapping(address => mapping(address => ActiveInfection)) public activeInfectorHistory; // wallet => virusAddress => infector
    mapping(address => uint256) public activeInfectorHistoryUniqueSum; // wallet => Sum of unique infections caused

    //// Spreader Status ////
    // Infection count by virus
    mapping(address => uint256) public activeInfectionCountByVirusContract;
    // Infection count by virus by infector
    mapping(address => mapping(address => uint256)) public infectorSuccessCount; // virusAddress => infector => count
    // Add a mapping that maintains a FirstInfection count for each infector
    mapping(address => mapping(address => uint256)) public firstInfectionCountByInfector; // virusAddress => infector => count

    event TopInfectorUpdated(
        address indexed virusAddress,
        address indexed infector,
        uint256 newCount,
        uint256 rank
    );

    event FirstInfectionInitialized(
        address indexed victim,
        address indexed virusAddress,
        address indexed infector,
        uint256 timestamp
    );

    event ActiveInfectionSet(
        address indexed victim,
        address indexed infector,
        address indexed virusAddress,
        uint256 infectionOrder,
        uint256 timestamp
    );

    event InfectionReset(
        address indexed victim,
        uint256 timestamp
    );

    event InfectionCountUpdated(
        address indexed virusAddress,
        address indexed infector,
        uint256 newCount,
        bool isIncrement,
        uint256 timestamp
    );

    event VirusInfectionCountUpdated(
        address indexed virusContract,
        uint256 count,
        uint256 timestamp
    );

    constructor(
        address _gameManager
    ) GameAware(_gameManager) Ownable(msg.sender) {}

    function setVirusFactory(address _virusFactory) external onlyOwner {
        require(!isVirusFactorySet, "Virus factory already set");
        require(_virusFactory != address(0), "Invalid virus factory address");
        virusFactory = payable(_virusFactory);
        isVirusFactorySet = true;

        address[] memory existingTokens = VirusFactory(payable(_virusFactory))
            .getAllTokens();
        require(
            existingTokens.length <= MAX_VIRUS_COUNT,
            "Too many existing viruses"
        );

        for (uint i = 0; i < existingTokens.length; i++) {
            registeredViruses[existingTokens[i]] = true;
        }
    }

    function tryInfect(
        address infector,
        address victim,
        uint256 newAmount,
        TransactionType txType
    ) external returns (bool) {
        address virusAddress = msg.sender;
        require(registeredViruses[virusAddress], "Not a registered virus");
        

        // Returns false if out of game period
        if (!gameManager.isGameActive()) {
            return false;
        }

        if (newAmount < MIN_INFECTION_AMOUNT) {
            return false;
        }

        if (txType == TransactionType.TOKEN_PURCHASE) {
            // Update the infection status of the victim's address
            if (!_activeWalletCheck(victim)) {
                return false;
            }

            // If there is no FirstInfection, create one.
            _initializeFirstInfection(infector, victim, virusAddress);
            // victim increase itself  the virus balance.
            _processTryActiveInfection(infector, victim, newAmount, true);
            
        } else if (txType == TransactionType.TOKEN_SELL) {
            // Update the infection status of the victim's address
            // infector decrease itself (Infector, infector, ...) the virus balance.
            _processTryActiveInfection(infector, infector, newAmount, false);
        } else {
            _processTryActiveInfection(infector, infector, newAmount, false);
            // Update the address of the victim and the infection status of the token increase side.
            if (!_activeWalletCheck(victim)) {
                return false;
            }
            // If there is no FirstInfection, create one.
            _initializeFirstInfection(infector, victim, virusAddress);
            _processTryActiveInfection(infector, victim, newAmount, true);
        }

        return true;
    }

    function _activeWalletCheck(address victim) private view returns (bool) {
        if (!_isEoaContract(victim)) {
            return false;
        }
        return (victim.balance >= ACTIVE_WALLET_CONDITION) || (firstInfection[victim].isActive);
    }

    function _initializeFirstInfection(address infector, address victim, address virusAddress) private {
        if (!firstInfection[victim].isActive) {
            if (infector == victim) {
                firstInfection[victim] = FirstInfection({
                    infector: address(0),
                    virusAddress: address(0),
                    isActive: true
                });        
            } else {
                firstInfection[victim] = FirstInfection({
                    infector: infector,
                    virusAddress: virusAddress,
                    isActive: true
                });
                firstInfectionCountByInfector[virusAddress][infector]++;
            }
            emit FirstInfectionInitialized(victim, virusAddress, infector, block.timestamp);
        }
    }

    function _processTryActiveInfection(
        address infector,
        address victim,
        uint256 newAmount,
        bool isPlus
    ) internal {
        address targetVirusAddress = msg.sender;
        address activeVirusAddress = activeInfection[victim].virusAddress;
        if (isPlus) {
            // If you are infected with the same virus, the number of infections will not be updated.
            if (activeVirusAddress != targetVirusAddress) {
                uint256 currentInfectionVirusBalance = 0;
                if (activeVirusAddress != address(0)) {
                    currentInfectionVirusBalance = IERC20(activeVirusAddress).balanceOf(victim);
                }

                uint256 targetVirusBalance = 0;
                if (targetVirusAddress != address(0)) {
                    uint256 currentTargetVirusBalance = IERC20(targetVirusAddress).balanceOf(victim);
                    require(newAmount <= type(uint256).max - currentTargetVirusBalance, "Overflow would occur");
                    targetVirusBalance = currentTargetVirusBalance + newAmount;
                }
                
                if (currentInfectionVirusBalance < targetVirusBalance) {
                    ActiveInfection memory oldActiveInfection = activeInfection[victim];
                    if (oldActiveInfection.virusAddress != address(0)) {
                        _updateInfectionCounts(oldActiveInfection, false);
                    }
                    
                    _setNewActiveInfection(
                        victim,
                        infector,
                        targetVirusAddress,
                        ++activeInfectorHistoryUniqueSum[victim]
                    );
                    activeInfectorHistory[victim][targetVirusAddress] = activeInfection[victim];

                    _updateInfectionCounts(activeInfection[victim], true);
                    _updateTopInfectors(targetVirusAddress, infector);
                }
            }
        } else {
            if (activeVirusAddress == targetVirusAddress) {
                address[] memory allVirusAddresses = VirusFactory(virusFactory).getAllTokens();
                
                // Maximum holding capacity and tracking of tokens
                uint256 maxBalance = 0;
                address maxBalanceVirusAddress = address(0);
                
                // Check the amount of each virus held.
                for (uint i = 0; i < allVirusAddresses.length; i++) {
                    address virusAddress = allVirusAddresses[i];
                    if (!registeredViruses[virusAddress]) continue;
                    
                    uint256 balance = IERC20(virusAddress).balanceOf(victim);
                    // In the case of targetVirusAddress, subtract the amount
                    if (virusAddress == targetVirusAddress) {
                        balance -= newAmount;
                    }
                    
                    // Updated maximum holding amount
                    if (balance > maxBalance) {
                        maxBalance = balance;
                        maxBalanceVirusAddress = virusAddress;
                    } else if (balance == maxBalance && maxBalanceVirusAddress != address(0)) {
                        // In the case of the same balance, the one with the larger (more recent) infectionOrder takes priority.
                        uint256 currentInfectionOrder = activeInfectorHistory[victim][allVirusAddresses[i]].infectionOrder;
                        uint256 maxInfectionOrder = activeInfectorHistory[victim][maxBalanceVirusAddress].infectionOrder;
                        
                        if (currentInfectionOrder > maxInfectionOrder) {
                            maxBalanceVirusAddress = virusAddress;
                        }
                    }
                }
                
                if (maxBalanceVirusAddress != address(0)) {
                    ActiveInfection memory oldActiveInfection = activeInfection[victim];
                    _updateInfectionCounts(oldActiveInfection, false);

                    if (maxBalance == 0) {
                        _resetActiveInfection(victim);
                    } else {
                        address newInfector = activeInfectorHistory[victim][maxBalanceVirusAddress].infector;
                        _setNewActiveInfection(
                            victim,
                            newInfector,
                            maxBalanceVirusAddress,
                            ++activeInfectorHistoryUniqueSum[victim]
                        );
                        _updateInfectionCounts(activeInfection[victim], true);
                    }

                    // Update top infectors rankings
                    _updateTopInfectorsRankings(
                        oldActiveInfection,
                        maxBalanceVirusAddress,
                        activeInfectorHistory[victim][maxBalanceVirusAddress].infector
                    );
                } else {
                    _resetActiveInfection(victim);
                }
            }
        }
    }

    function _updateTopInfectors(
        address virusAddress,
        address infector
    ) internal {
        if (infector == address(0)) {
            return;
        }

        uint256 newCount = infectorSuccessCount[virusAddress][infector];
        address[3] storage topAddresses = topInfectorsByVirus[virusAddress];

        // Check if infector is already in top 3
        for (uint256 i = 0; i < 3; i++) {
            if (topAddresses[i] == infector) {
                return;
            }
        }

        // Find first empty slot or the slot with lowest count
        uint256 lowestCount = type(uint256).max;
        uint256 lowestCountIndex = 3;

        for (uint256 i = 0; i < 3; i++) {
            if (topAddresses[i] == address(0)) {
                // Found empty slot
                topAddresses[i] = infector;
                emit TopInfectorUpdated(virusAddress, infector, newCount, i + 1);
                return;
            }
            uint256 currentCount = infectorSuccessCount[virusAddress][topAddresses[i]];
            if (currentCount < lowestCount) {
                lowestCount = currentCount;
                lowestCountIndex = i;
            }
        }

        // Replace the lowest count if new count is higher
        if (newCount > lowestCount && lowestCountIndex < 3) {
            topAddresses[lowestCountIndex] = infector;
            emit TopInfectorUpdated(virusAddress, infector, newCount, lowestCountIndex + 1);
        }
    }

    // Obtain active infection for specified address
    function getActiveInfection(
        address victim
    ) external view returns (ActiveInfection memory) {
        return activeInfection[victim];
    }

    // Get the current infection status of the specified address
    function getCurrentInfection(
        address victim
    )
        external
        view
        returns (
            address infector,
            address virusAddress,
            bool isActive
        )
    {
        ActiveInfection memory infection = activeInfection[victim];
        return (
            infection.infector,
            infection.virusAddress,
            infection.isActive
        );
    }

    function getFirstInfection(
        address victim
    )
        external
        view
        returns (
            address infector,
            address virusAddress,
            bool isActive
        )
    {
        FirstInfection memory infection = firstInfection[victim];
        return (
            infection.infector,
            infection.virusAddress,
            infection.isActive
        );
    }

    function getActiveInfectionCountByVirusContract(
        address virusAddress
    ) external view returns (uint256) {
        require(registeredViruses[virusAddress], "Not a registered virus");
        return activeInfectionCountByVirusContract[virusAddress];
    }

    function getAllActiveInfectionCounts()
        external
        view
        returns (address[] memory, uint256[] memory)
    {
        // Get all tokens from virus factory
        address[] memory allVirusAddresses = VirusFactory(virusFactory).getAllTokens();
        
        // Create arrays of the same size as allTokens
        address[] memory virusAddresses = new address[](allVirusAddresses.length);
        uint256[] memory counts = new uint256[](allVirusAddresses.length);
        uint256 currentIndex = 0;

        // Iterate through all registered viruses
        for (uint256 i = 0; i < allVirusAddresses.length; i++) {
            address virusAddress = allVirusAddresses[i];
            if (registeredViruses[virusAddress]) {
                virusAddresses[currentIndex] = virusAddress;
                counts[currentIndex] = activeInfectionCountByVirusContract[virusAddress];
                currentIndex++;
            }
        }

        address[] memory finalAddresses = new address[](currentIndex);
        uint256[] memory finalCounts = new uint256[](currentIndex);
        
        for (uint256 i = 0; i < currentIndex; i++) {
            finalAddresses[i] = virusAddresses[i];
            finalCounts[i] = counts[i];
        }

        return (finalAddresses, finalCounts);
    }

    function getInfectorSuccessCount(
        address virusAddress,
        address infector
    ) external view returns (uint256) {
        return infectorSuccessCount[virusAddress][infector];
    }

    function getInfectorSuccessCountMulti(
        address infector
    ) external view returns (uint256[] memory) {
        address[] memory allVirusAddresses = VirusFactory(virusFactory).getAllTokens();
        uint256[] memory counts = new uint256[](allVirusAddresses.length);
        
        for (uint256 i = 0; i < allVirusAddresses.length; i++) {
            counts[i] = infectorSuccessCount[allVirusAddresses[i]][infector];
        }
        return counts;
    }

    function getFirstInfectionCount(
        address virusAddress,
        address infector
    ) external view returns (uint256) {
        return firstInfectionCountByInfector[virusAddress][infector];
    }

    function getFirstInfectionCountMulti(
        address infector
    ) external view returns (uint256[] memory) {
        address[] memory allVirusAddresses = VirusFactory(virusFactory).getAllTokens();
        uint256[] memory counts = new uint256[](allVirusAddresses.length);
        
        for (uint256 i = 0; i < allVirusAddresses.length; i++) {
            counts[i] = firstInfectionCountByInfector[allVirusAddresses[i]][infector];
        }
        return counts;
    }

    function getTopInfectors(
        address virusAddress
    ) external view returns (address[3] memory, uint256[3] memory) {
        address[3] memory addresses = topInfectorsByVirus[virusAddress];
        uint256[3] memory counts;
        
        for (uint256 i = 0; i < 3; i++) {
            counts[i] = infectorSuccessCount[virusAddress][addresses[i]];
        }
        
        for (uint256 i = 0; i < 2; i++) {
            for (uint256 j = 0; j < 2 - i; j++) {
                if (counts[j] < counts[j + 1]) {
                    
                    uint256 tempCount = counts[j];
                    counts[j] = counts[j + 1];
                    counts[j + 1] = tempCount;
                    
                    address tempAddr = addresses[j];
                    addresses[j] = addresses[j + 1];
                    addresses[j + 1] = tempAddr;
                }
            }
        }
        
        return (addresses, counts);
    }

    function _updateInfectionCounts(
        ActiveInfection memory infection,
        bool isIncrement
    ) private {
        if (infection.isActive && infection.virusAddress != address(0)) {
            if (isIncrement) {
                _incrementActiveInfectionCount(infection.virusAddress);
                infectorSuccessCount[infection.virusAddress][infection.infector]++;
            } else {
                if (activeInfectionCountByVirusContract[infection.virusAddress] > 0) {
                    _decrementActiveInfectionCount(infection.virusAddress);
                }
                if (infectorSuccessCount[infection.virusAddress][infection.infector] > 0) {
                    infectorSuccessCount[infection.virusAddress][infection.infector]--;
                }
            }

            emit InfectionCountUpdated(
                infection.virusAddress,
                infection.infector,
                infectorSuccessCount[infection.virusAddress][infection.infector],
                isIncrement,
                block.timestamp
            );
        }
    }

    function _resetActiveInfection(address victim) private {
        activeInfection[victim] = ActiveInfection({
            infector: address(0),
            virusAddress: address(0),
            isActive: false,
            infectionOrder: 0
        });

        emit InfectionReset(victim, block.timestamp);
    }

    function _setNewActiveInfection(
        address victim,
        address infector,
        address virusAddress,
        uint256 infectionOrder
    ) private {
        activeInfection[victim] = ActiveInfection({
            infector: infector,
            virusAddress: virusAddress,
            isActive: true,
            infectionOrder: infectionOrder
        });

        emit ActiveInfectionSet(
            victim,
            infector,
            virusAddress,
            infectionOrder,
            block.timestamp
        );
    }

    function _updateTopInfectorsRankings(
        ActiveInfection memory oldInfection,
        address maxBalanceVirusAddress,
        address newInfector
    ) private {
        _updateTopInfectors(
            oldInfection.virusAddress,
            oldInfection.infector
        );
        _updateTopInfectors(
            maxBalanceVirusAddress,
            newInfector
        );
    }

    function _isEoaContract(address account) private view returns (bool) {
        uint256 size;
        assembly {
            size := extcodesize(account)
        }
        return size == 0;
    }

    function _incrementActiveInfectionCount(address virusContract) internal {
        activeInfectionCountByVirusContract[virusContract]++;
        emit VirusInfectionCountUpdated(
            virusContract,
            activeInfectionCountByVirusContract[virusContract],
            block.timestamp
        );
    }

    function _decrementActiveInfectionCount(address virusContract) internal {
        if (activeInfectionCountByVirusContract[virusContract] > 0) {
            activeInfectionCountByVirusContract[virusContract]--;
            emit VirusInfectionCountUpdated(
                virusContract,
                activeInfectionCountByVirusContract[virusContract],
                block.timestamp
            );
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "./abstracts/GameAware.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./interfaces/IVirusFactory.sol";

contract RewardFirstInfection is GameAware, ReentrancyGuard {
    IVirusFactory public virusFactory;
    bool public isVirusFactorySet;
    address public immutable deployer;
    mapping(address => uint256) private rewards;
    mapping(address => mapping(address => uint256)) private tokenRewardsVirus;
    
    event RewardDeposited(address indexed infector, uint256 amount);
    event RewardWithdrawn(address indexed infector, uint256 amount);
    event VirusRewardDeposited(address indexed infector, uint256 amount, address token);
    event VirusRewardWithdrawn(address indexed infector, uint256 amount, address token);

    modifier onlyDeployer() {
        require(msg.sender == deployer, "Only deployer can call");
        _;
    }

    constructor(address _gameManager) GameAware(_gameManager) {
        deployer = msg.sender;
    }

    function setVirusFactory(address _virusFactory) external onlyDeployer {
        require(!isVirusFactorySet, "Virus factory already set");
        require(_virusFactory != address(0), "Invalid virus factory address");
        virusFactory = IVirusFactory(_virusFactory);
        isVirusFactorySet = true;
    }

    function deposit(address infector) external payable {
        require(msg.value > 0, "Deposit amount must be greater than 0");
        require(infector != address(0), "Invalid infector address");
        
        rewards[infector] += msg.value;
        emit RewardDeposited(infector, msg.value);
    }

    function recordVirusDeposit(address infector, uint256 amount) external {
        require(isVirusFactorySet, "Virus factory not set");
        require(infector != address(0), "Invalid infector address");
        require(amount > 0, "Amount must be greater than 0");
        require(virusFactory.isVirusToken(msg.sender), "Not a valid virus token");
        
        address token = msg.sender;
        tokenRewardsVirus[token][infector] += amount;
        
        emit VirusRewardDeposited(infector, amount, token);
    }

    function withdraw() external onlyAfterGame nonReentrant {
        uint256 ethAmount = rewards[msg.sender];
        require(ethAmount > 0, "No rewards available");
        if (ethAmount > 0) {
            rewards[msg.sender] = 0;
            (bool success, ) = payable(msg.sender).call{value: ethAmount}("");
            require(success, "ETH transfer failed");
            emit RewardWithdrawn(msg.sender, ethAmount);
        }
    }

    function withdrawVirus(address virus) external onlyAfterGame nonReentrant {
        uint256 tokenAmount = tokenRewardsVirus[virus][msg.sender];
        require(tokenAmount > 0, "No rewards available");
        tokenRewardsVirus[virus][msg.sender] = 0;
        IERC20(virus).transfer(msg.sender, tokenAmount);
        emit VirusRewardWithdrawn(msg.sender, tokenAmount, virus);
    }

    function getRewardAmount(address infector) external view returns (uint256) {
        return rewards[infector];
    }

    function getVirusRewardAmount(address infector, address virus) external view returns (uint256) {
        return tokenRewardsVirus[virus][infector];
    }
    receive() external payable {}
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import "./abstracts/GameAware.sol";
import "./InfectionManager.sol";
import "./VirusFactory.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/Address.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Factory.sol";
import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Pair.sol";
import "@uniswap-v2-periphery-1.1.0-beta.0/contracts/interfaces/IUniswapV2Router02.sol";
import "./interfaces/IVirus.sol";
import "./interfaces/IWETH.sol";

contract RewardWinnerPot is Ownable, ReentrancyGuard, GameAware {
    using Address for address payable;

    // Constants for fee distribution
    uint256 private constant FIRST_PLACE_SHARE = 170; // 17%
    uint256 private constant SECOND_PLACE_SHARE = 100; // 10%
    uint256 private constant THIRD_PLACE_SHARE = 70; // 7%

    uint256 public constant UNISWAP_SHARE = 660; // 66%
    uint256 public constant TOTAL_SHARES = 1000; // 100%

    address public immutable WETH;
    address private immutable DEAD_ADDRESS;

    uint256 public totalFees;
    address public immutable deployerAddress;
    address public uniswapFactory;
    address public uniswapRouter;
    bool public deployerClaimed;

    mapping(address => uint256) public pendingRewards;
    bool public isDistributed;

    event FeesAccumulated(uint256 amount);
    event RewardsDeposited(address indexed depositor, uint256 amount);
    event RewardsDistributed(address[] winners, uint256[] amounts);
    event RewardClaimed(address indexed user, uint256 amount);
    event UniswapShareTransferred(uint256 amount);
    event DeployerShareTransferred(uint256 amount);
    event UniswapShareBurned(uint256 amount);

    InfectionManager public infectionManager;
    VirusFactory public virusFactory;
    
    bool public contractsInitialized;

    event ContractsInitialized(address virusFactory);

    uint256 public initialSlippage = 950; // 95% (5% initial max slippage)
    uint256 public maxSlippage = 900; // 90% (10% absolute max slippage)
    uint256 public slippageStep = 10; // 1% steps

    constructor(
        address _uniswapFactory,
        address _uniswapRouter,
        address _gameManager,
        address _infectionManager,
        address _weth
    ) Ownable(msg.sender) GameAware(_gameManager) {
        require(
            _uniswapFactory != address(0),
            "Invalid uniswap manager address"
        );
        require(
            _infectionManager != address(0),
            "Invalid infection manager address"
        );
        deployerAddress = msg.sender;
        uniswapFactory = _uniswapFactory;
        uniswapRouter = _uniswapRouter;
        infectionManager = InfectionManager(_infectionManager);
        WETH = _weth;
    }

    function setVirusFactory(
        address _virusFactory
    ) external onlyOwner {
        require(!contractsInitialized, "Contracts are already initialized");
        require(_virusFactory != address(0), "Invalid virus factory address");
        virusFactory = VirusFactory(payable(_virusFactory));
        
        contractsInitialized = true;
        emit ContractsInitialized(_virusFactory);
    }

    receive() external payable {
        require(contractsInitialized, "Contracts not initialized");
        require(msg.value > 0, "Must deposit some ETH");
        totalFees += msg.value;
        emit RewardsDeposited(msg.sender, msg.value);
        emit FeesAccumulated(msg.value);
    }

    function aggregation() external onlyAfterGame {
        require(virusFactory.allTokensUniswapEnabled(), "All viruses are not added to Uniswap V2.");

        uint256 wethBalance = IERC20(WETH).balanceOf(address(this));
        if (wethBalance > 0) {
            IWETH(WETH).withdraw(wethBalance);
        }

        (
            address winningVirusContract,
        ) = _getWinningVirus();
        (
            address[3] memory topInfectors,
        ) = _getTopInfectors(winningVirusContract);
        _distributeWinnerRewards(topInfectors);

        _buyAndBurnWinningVirus(winningVirusContract);
    }

    function _getWinningVirus()
        internal
        view
        returns (address winningVirusContract, uint256 maxInfections)
    {
        (
            address[] memory virusAddresses,
            uint256[] memory counts
        ) = infectionManager.getAllActiveInfectionCounts();

        maxInfections = 0;
        for (uint256 i = 0; i < virusAddresses.length; i++) {
            if (virusAddresses[i] == address(0)) break;
            if (counts[i] > maxInfections) {
                maxInfections = counts[i];
                winningVirusContract = virusAddresses[i];
            }
        }

        require(winningVirusContract != address(0), "No winning virus found");
        return (winningVirusContract, maxInfections);
    }

    function _getTopInfectors(
        address virusContract
    ) internal view returns (address[3] memory, uint256[3] memory) {
        return infectionManager.getTopInfectors(virusContract);
    }

    function _distributeWinnerRewards(address[3] memory topInfectors) internal {
        require(!isDistributed, "Rewards already distributed");

        uint256 totalRewardAmount = totalFees;

        uint256 firstPlaceAmount = (totalRewardAmount * FIRST_PLACE_SHARE) /
            TOTAL_SHARES;
        uint256 secondPlaceAmount = (totalRewardAmount * SECOND_PLACE_SHARE) /
            TOTAL_SHARES;
        uint256 thirdPlaceAmount = (totalRewardAmount * THIRD_PLACE_SHARE) /
            TOTAL_SHARES;

        pendingRewards[topInfectors[0]] += firstPlaceAmount;
        pendingRewards[topInfectors[1]] += secondPlaceAmount;
        pendingRewards[topInfectors[2]] += thirdPlaceAmount;

        isDistributed = true;
    }

    function claimReward() external nonReentrant onlyAfterGame {
        uint256 reward = pendingRewards[msg.sender];
        require(reward > 0, "No rewards to claim");
        pendingRewards[msg.sender] = 0;

        require(address(this).balance >= reward, "Insufficient contract balance");

        payable(msg.sender).sendValue(reward);
        emit RewardClaimed(msg.sender, reward);
    }

    function setSlippageParameters(
        uint256 _initialSlippage,
        uint256 _maxSlippage,
        uint256 _slippageStep
    ) external onlyOwner {
        require(_initialSlippage > _maxSlippage, "Initial slippage must be higher than max");
        require(_initialSlippage <= 1000 && _maxSlippage > 0, "Invalid slippage values");
        require(_slippageStep > 0, "Invalid step value");
        initialSlippage = _initialSlippage;
        maxSlippage = _maxSlippage;
        slippageStep = _slippageStep;
    }

    function _buyAndBurnWinningVirus(address winningVirusContract) internal {
        uint256 uniswapAmount = (totalFees * UNISWAP_SHARE) / TOTAL_SHARES;
        require(uniswapAmount > 0, "No ETH for Uniswap");

        address pair = IUniswapV2Factory(uniswapFactory).getPair(
            winningVirusContract,
            WETH
        );
        require(pair != address(0), "Pair does not exist");

        IUniswapV2Router02 router = IUniswapV2Router02(uniswapRouter);

        // Set swap parameters
        address[] memory path = new address[](2);
        path[0] = router.WETH();
        path[1] = winningVirusContract;

        uint256[] memory amountsOut = router.getAmountsOut(uniswapAmount, path);
        
        uint256 currentSlippage = initialSlippage;
        bool swapSuccess = false;

        while (currentSlippage >= maxSlippage && !swapSuccess) {
            uint256 minAmountOut = (amountsOut[1] * currentSlippage) / 1000;
            
            try router.swapExactETHForTokens{value: uniswapAmount}(
                minAmountOut,
                path,
                address(this),
                block.timestamp + 15
            ) {
                swapSuccess = true;
            } catch {
                // Reduce acceptance threshold by step
                currentSlippage = currentSlippage - slippageStep;
            }
        }

        require(swapSuccess, "Swap failed at all slippage levels");

        // Continue with token burning
        uint256 tokenBalance = IERC20(winningVirusContract).balanceOf(address(this));
        if (tokenBalance > 0) {
            IVirus(winningVirusContract).burn(tokenBalance);
            emit UniswapShareBurned(tokenBalance);
        }
    }

    function getClaimableReward(address _address) public view returns (uint256) {
        return pendingRewards[_address];
    }

    function getTotalBalance() public view returns (uint256) {
        return address(this).balance + IERC20(WETH).balanceOf(address(this));
    }
}

File 6 of 29 : GameAware.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import "../interfaces/IGameManager.sol";

abstract contract GameAware {
    IGameManager public gameManager;

    constructor(address _gameManager) {
        require(
            _gameManager != address(0),
            "GameManager address cannot be zero"
        );
        gameManager = IGameManager(_gameManager);
    }

    modifier onlyDuringGame() {
        require(gameManager.isGameActive(), "Game is not active");
        _;
    }

    modifier onlyBeforeGame() {
        require(
            !gameManager.isGameActive() && !gameManager.isGameEnded(),
            "Game already started or ended"
        );
        _;
    }

    modifier onlyAfterGame() {
        require(gameManager.isGameEnded(), "Game is not ended yet");
        _;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import "./Virus.sol";
import "./abstracts/GameAware.sol";
import "./RewardWinnerPot.sol";
import "./RewardFirstInfection.sol";
import "./InfectionManager.sol";

import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Pair.sol";
import "@uniswap-v2-core-1.0.1/contracts/interfaces/IUniswapV2Factory.sol";
import "@uniswap-v2-periphery-1.1.0-beta.0/contracts/interfaces/IUniswapV2Router02.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";

contract VirusFactory is Ownable, GameAware, ReentrancyGuard {
    event TokenStateChanged(address indexed virus, TokenState state);

    InfectionManager public infectionManager;
    RewardWinnerPot public rewardWinnerPot;
    RewardFirstInfection public rewardFirstInfection;
    uint256 private nextVirusId;
    address[] public allTokens;
    bool public allTokensUniswapEnabled;
    uint256 public lastProcessedIndex;

    address public immutable UNISWAP_V2_FACTORY;
    address public immutable UNISWAP_V2_ROUTER;
    address public immutable devAddress;
    address public immutable virusDrop;
    uint256 public accumulatedEth;

    bytes32 public merkleRoot;
    uint256 public whitelistEndTime;

    uint256 public constant WHITELIST_MAX_PURCHASE = 0.5 ether;
    mapping(address => uint256) public whitelistPurchases;

    constructor(
        address _gameManager,
        address _infectionManager,
        address payable _rewardWinnerPot,
        address payable _rewardFirstInfection,
        address _uniswapFactory,
        address _uniswapRouter,
        address _devAddress,
        address _virusDrop
    ) Ownable(msg.sender) GameAware(_gameManager) {
        infectionManager = InfectionManager(_infectionManager);
        rewardWinnerPot = RewardWinnerPot(_rewardWinnerPot);
        rewardFirstInfection = RewardFirstInfection(payable(_rewardFirstInfection));
        UNISWAP_V2_FACTORY = _uniswapFactory;
        UNISWAP_V2_ROUTER = _uniswapRouter;
        nextVirusId = 0;
        devAddress = _devAddress;
        virusDrop = _virusDrop;
    }

    enum TokenState {
        NOT_CREATED,
        ACTIVE,
        UNISWAP_ENABLED
    }

    uint public constant FEE_PERCENTAGE = 25 * 1e15; // 2.5% = 0.025 * 1e18
    uint public constant INFECTED_FEE_PERCENTAGE = 10 * 1e15; // 1% = 0.01 * 1e18
    uint public constant DECIMALS = 1e18;
    uint public constant MAX_SUPPLY = 100_000_000_000 * DECIMALS; // 100 billion
    uint public constant SUPPLY_THRESHOLD = 67_000_000_000 * DECIMALS; // 67 billion
    

    uint public constant WINNER_POT_SHARE = 60; // 60%
    uint public constant ALL_SHARE = 100; // 100%

    mapping(address => TokenState) public tokens;
    mapping(address => uint) public collateral; // amount of ETH received
    mapping(address => mapping(address => uint)) public balances; // token balances for ppl bought tokens not released yet
    mapping(address => uint256) public customSlippageTolerances;

    uint256 public constant DEFAULT_SLIPPAGE_TOLERANCE = 500; // 5%
    uint256 public constant MAX_SLIPPAGE_TOLERANCE = 10000; // 100%

    uint256 public sellCooldownPeriod = 1 minutes;
    uint256 public constant MAX_COOLDOWN_PERIOD = 5 minutes;
    mapping(address => uint256) public lastBuyTimestamp;

    modifier validateTokenOperation(address virusAddress) {
        require(
            tokens[virusAddress] == TokenState.ACTIVE,
            "Token not found or not available in ACTIVE"
        );
        _;
    }

    struct FeeBreakdown {
        uint256 totalBasicFee;
        uint256 winnerPotFee;
        uint256 devFee;
    }

    function createToken(
        string memory name,
        string memory symbol
    ) external onlyOwner onlyBeforeGame returns (address) {
        require(nextVirusId < 30, "Maximum number of viruses reached");
        IUniswapV2Router02 router = IUniswapV2Router02(UNISWAP_V2_ROUTER);
        Virus token = new Virus(
            name,
            symbol,
            0,
            address(rewardWinnerPot),
            UNISWAP_V2_FACTORY,
            UNISWAP_V2_ROUTER,
            address(infectionManager),
            payable(address(rewardFirstInfection)),
            address(gameManager),
            address(devAddress),
            address(rewardWinnerPot),
            router.WETH(),
            address(virusDrop)
        );
        tokens[address(token)] = TokenState.ACTIVE;
        nextVirusId++;

        allTokens.push(address(token));

        return address(token);
    }

    function buy(
        address virusAddress,
        uint256 virusAmount,
        bytes32[] calldata merkleProof
    ) external payable validateTokenOperation(virusAddress) onlyDuringGame nonReentrant {
        if (block.timestamp < whitelistEndTime) {
            require(isWhitelisted(msg.sender, merkleProof), "Not whitelisted");
        }

        require(virusAmount > 0, "Amount must be greater than 0");
        require(virusAmount % DECIMALS == 0, "Amount must be a whole number");
        
        Virus token = Virus(virusAddress);
        require(
            token.totalSupply() + virusAmount <= SUPPLY_THRESHOLD,
            "Purchase would exceed supply threshold"
        );
        
        uint requiredEth = _calculateTokenPrice(
            virusAddress,
            virusAmount,
            true
        );

        (
            uint baseFee,
            uint firstInfectedFee,
            address firstInfector
        ) = _calculateBuyFeesAndCreateNoInfection(msg.sender, requiredEth);
        uint totalETHRequired = requiredEth + baseFee + firstInfectedFee;

        require(msg.value >= totalETHRequired, "Insufficient ETH sent");

        if (block.timestamp < whitelistEndTime) {
            uint256 newTotalPurchase = whitelistPurchases[msg.sender] + totalETHRequired;
            require(newTotalPurchase <= WHITELIST_MAX_PURCHASE, "Exceeds whitelist purchase limit");
            whitelistPurchases[msg.sender] = newTotalPurchase;
        }

        collateral[virusAddress] += requiredEth;
        token.mint(msg.sender, virusAmount);

        if (token.totalSupply() >= SUPPLY_THRESHOLD) {
            _enableUniswap(virusAddress);
        }

        if (firstInfectedFee > 0) {
            rewardFirstInfection.deposit{value: firstInfectedFee}(
                firstInfector
            );
        }

        if (msg.value > totalETHRequired) {
            (bool success, ) = payable(msg.sender).call{
                value: msg.value - totalETHRequired
            }("");
            require(success, "ETH return failed");
        }

        lastBuyTimestamp[msg.sender] = block.timestamp;
    }

    function sell(
        address virusAddress,
        uint256 virusAmount,
        uint256 minAmountOut
    ) external validateTokenOperation(virusAddress) onlyDuringGame nonReentrant {
        require(virusAmount > 0, "Amount must be greater than 0");
        require(virusAmount % DECIMALS == 0, "Amount must be a whole number");
        require(
            block.timestamp >= lastBuyTimestamp[msg.sender] + sellCooldownPeriod,
            "Sell cooldown period not elapsed"
        );

        
        Virus token = Virus(virusAddress);
        require(
            token.balanceOf(msg.sender) >= virusAmount,
            "Insufficient token balance"
        );
        require(
            token.allowance(msg.sender, address(this)) >= virusAmount,
            "Please approve tokens before selling"
        );
        
        uint256 sellPrice = _calculateTokenPrice(
            virusAddress,
            virusAmount,
            false
        );
        uint256 fee = _calculateAndDistributeSellFees(sellPrice);
        uint256 netAmount = sellPrice - fee;

        require(netAmount >= minAmountOut, "Output amount below minimum");
        require(
            collateral[virusAddress] >= netAmount,
            "Insufficient collateral for this virus"
        );

        collateral[virusAddress] -= sellPrice;
        token.transferFrom(msg.sender, address(this), virusAmount);
        token.burn(virusAmount);
        (bool success, ) = payable(msg.sender).call{value: netAmount}("");
        require(success, "ETH transfer failed");
    }

    function afterGameEndsUniswapAdded(uint256 batchSize) external onlyAfterGame {
        require(!allTokensUniswapEnabled, "All tokens already Uniswap enabled");
        require(batchSize > 0, "Batch size must be greater than 0");

        uint256 startIndex = lastProcessedIndex;
        uint256 endIndex = Math.min(startIndex + batchSize, allTokens.length);

        for (uint i = startIndex; i < endIndex; i++) {
            address virusAddress = allTokens[i];
            if (
                tokens[virusAddress] == TokenState.ACTIVE &&
                collateral[virusAddress] > 0
            ) {
                _enableUniswap(virusAddress);
            }

            if (
                tokens[virusAddress] == TokenState.ACTIVE &&
                collateral[virusAddress] == 0
            ) {
                tokens[virusAddress] = TokenState.UNISWAP_ENABLED;
            }

            lastProcessedIndex = i + 1;
        }

        if (lastProcessedIndex == allTokens.length) {
            allTokensUniswapEnabled = true;
        }
    }

    function _createLiquidityPool(
        address virusAddress
    ) internal returns (address) {
        IUniswapV2Factory factory = IUniswapV2Factory(UNISWAP_V2_FACTORY);
        IUniswapV2Router02 router = IUniswapV2Router02(UNISWAP_V2_ROUTER);
        
        address pair = factory.getPair(virusAddress, router.WETH());
        
        if (pair == address(0)) {
            pair = factory.createPair(virusAddress, router.WETH());
        }
        
        return pair;
    }

    function _provideLiquidity(
        address virusAddress,
        uint256 tokenAmount,
        uint256 ethAmount
    ) internal returns (uint) {
        Virus token = Virus(virusAddress);
        IUniswapV2Router02 router = IUniswapV2Router02(UNISWAP_V2_ROUTER);
        
        token.approve(UNISWAP_V2_ROUTER, tokenAmount);
        
        uint256 slippageBps = getSlippageTolerance(virusAddress);
        uint256 minTokenAmount = tokenAmount * (10000 - slippageBps) / 10000;
        uint256 minEthAmount = ethAmount * (10000 - slippageBps) / 10000;
        
        (uint256 amountToken,, uint liquidity) = router.addLiquidityETH{value: ethAmount}(
            virusAddress,
            tokenAmount,
            minTokenAmount,
            minEthAmount,
            address(this),
            block.timestamp
        );
        
        if (amountToken < tokenAmount) {
            uint256 unusedTokens = tokenAmount - amountToken;
            token.burn(unusedTokens);
        }
        
        token.approve(UNISWAP_V2_ROUTER, 0);
        
        return liquidity;
    }

    function _burnLpTokens(address poolAddress, uint256 amount) internal {
        IUniswapV2Pair pool = IUniswapV2Pair(poolAddress);
        pool.transfer(address(0), amount);
    }

    function _calculateBasicFee(
        uint256 baseAmount
    ) internal pure returns (FeeBreakdown memory) {
        uint256 totalBasicFee = (baseAmount * FEE_PERCENTAGE) / DECIMALS;
        
        uint256 winnerPotFee = (totalBasicFee * WINNER_POT_SHARE) / ALL_SHARE;
        uint256 devFee = totalBasicFee - winnerPotFee;

        return FeeBreakdown({
            totalBasicFee: totalBasicFee,
            winnerPotFee: winnerPotFee,
            devFee: devFee
        });
    }

    function _distributeFees(FeeBreakdown memory fees) internal {
        if (fees.winnerPotFee > 0) {
            (bool success, ) = address(rewardWinnerPot).call{value: fees.winnerPotFee}("");
            require(success, "Winner pot fee transfer failed");
        }

        if (fees.devFee > 0) {
            require(
                address(this).balance >= fees.devFee,
                "Insufficient balance for dev fee"
            );
            (bool success, ) = devAddress.call{value: fees.devFee}("");
            require(success, "Dev fee transfer failed");
        }
    }

    function _calculateAndDistributeFees(uint256 baseAmount) internal returns (uint256) {
        FeeBreakdown memory fees = _calculateBasicFee(baseAmount);
        _distributeFees(fees);
        return fees.totalBasicFee;
    }

    function _calculateBuyFeesAndCreateNoInfection(
        address user,
        uint256 baseAmount
    )
        internal
        returns (
            uint baseFee,
            uint firstInfectedFee,
            address firstInfectorAddress
        )
    {
        baseFee = _calculateAndDistributeFees(baseAmount);

        (address firstInfector, , bool isActive) = infectionManager
            .getFirstInfection(user);

        firstInfectedFee = (isActive && firstInfector != address(0))
            ? (baseAmount * INFECTED_FEE_PERCENTAGE) / DECIMALS
            : 0;

        return (baseFee, firstInfectedFee, firstInfector);
    }

    function _calculateAndDistributeSellFees(uint256 baseAmount) internal returns (uint) {
        return _calculateAndDistributeFees(baseAmount);
    }

    function _calculateBuyPrice(
        uint256 totalSupply,
        uint256 numTokens
    ) internal pure returns (uint) {
        uint256 finalSupply = totalSupply + numTokens;
        return _curveIntegral(finalSupply) - _curveIntegral(totalSupply);
    }

    function _calculateSellPrice(
        uint256 totalSupply,
        uint256 numTokens
    ) internal pure returns (uint256) {
        uint256 finalSupply = totalSupply - numTokens;
        return _curveIntegral(totalSupply) - _curveIntegral(finalSupply);
    }

    // Add these helper functions
    function _curveIntegral(uint256 _x) internal pure returns (uint256) {
        uint256 scaledX = _x / DECIMALS;
        return ((scaledX * scaledX) / 400) + scaledX;
    }

    function _calculateTokenPrice(
        address virusAddress,
        uint virusAmount,
        bool isBuy
    ) internal view returns (uint) {
        Virus token = Virus(virusAddress);
        uint currentSupply = token.totalSupply();

        if (isBuy) {
            return _calculateBuyPrice(currentSupply, virusAmount);
        } else {
            require(
                currentSupply >= virusAmount,
                "Cannot sell more than total supply"
            );
            return _calculateSellPrice(currentSupply, virusAmount);
        }
    }

    function _enableUniswap(address virusAddress) internal {
        require(
            tokens[virusAddress] == TokenState.ACTIVE,
            "Token must be in ACTIVE state"
        );

        tokens[virusAddress] = TokenState.UNISWAP_ENABLED;
        emit TokenStateChanged(virusAddress, TokenState.UNISWAP_ENABLED);

        Virus token = Virus(virusAddress);
        uint liquidityTokenAmount = MAX_SUPPLY - SUPPLY_THRESHOLD;

        token.mint(address(this), liquidityTokenAmount);

        address pool = _createLiquidityPool(virusAddress);
        uint liquidity = _provideLiquidity(
            virusAddress,
            liquidityTokenAmount,
            collateral[virusAddress]
        );

        _burnLpTokens(pool, liquidity);
    }

    function _calculateFeePercentage(address userAddress) internal view returns (uint256) {
        (address firstInfector, , bool isActive) = infectionManager.getFirstInfection(
            userAddress
        );
        
        uint256 feePercentage = FEE_PERCENTAGE;
        if (isActive && firstInfector != address(0)) {
            feePercentage += INFECTED_FEE_PERCENTAGE;
        }
        
        return feePercentage;
    }

    function getBuyVirusPrice(
        address virusAddress,
        address userAddress,
        uint virusAmount
    ) external view returns (uint256 baseAmount, uint256 fee) {
        require(
            tokens[virusAddress] != TokenState.NOT_CREATED,
            "Token does not exist"
        );

        baseAmount = _calculateTokenPrice(
            virusAddress,
            virusAmount,
            true
        );

        fee = _calculateBasicFee(baseAmount).totalBasicFee;
        (address firstInfector, , bool isActive) = infectionManager
            .getFirstInfection(userAddress);

        uint256 firstInfectedFee = (isActive && firstInfector != address(0))
            ? (baseAmount * INFECTED_FEE_PERCENTAGE) / DECIMALS
            : 0;
        fee += firstInfectedFee;
        return (baseAmount, fee);
    }

    function getBuyVirusPriceFromETH(
        address virusAddress,
        address userAddress,
        uint256 ethAmount
    ) external view returns (
        uint256 virusAmount,
        uint256 basicAmount,
        uint256 fee
    ) {
        require(
            tokens[virusAddress] != TokenState.NOT_CREATED,
            "Token does not exist"
        );

        uint256 feePercentage = _calculateFeePercentage(userAddress);
        uint256 totalMultiplier = DECIMALS + feePercentage;

        uint256 left = 0;
        uint256 right = 1e36;
        
        while (left < right - 1) {
            uint256 mid = (left + right) / 2;
            uint256 price = _calculateTokenPrice(virusAddress, mid, true);
            uint256 totalPrice = (price * totalMultiplier) / DECIMALS;
            
            if (totalPrice <= ethAmount) {
                left = mid;
            } else {
                right = mid;
            }
        }

        virusAmount = (left / 1e18) * 1e18;
        require(virusAmount > 0, "Amount too small");

        (basicAmount, fee) = this.getBuyVirusPrice(virusAddress, userAddress, virusAmount);

        return (virusAmount, basicAmount, fee);
    }

    function getSellVirusPrice(
        address virusAddress,
        uint virusAmount
    ) external view returns (uint256 priceIncludedFees, uint256 fee) {
        require(
            tokens[virusAddress] != TokenState.NOT_CREATED,
            "Token does not exist"
        );

        priceIncludedFees = _calculateTokenPrice(
            virusAddress,
            virusAmount,
            false
        );

        uint256 feePercentage = FEE_PERCENTAGE;

        fee = (priceIncludedFees * feePercentage) / DECIMALS;
        return (priceIncludedFees, fee);
    }

    function getAllTokens() external view returns (address[] memory) {
        return allTokens;
    }

    function getTokenCount() external view returns (uint256) {
        return allTokens.length;
    }

    receive() external payable {
        accumulatedEth += msg.value;
    }

    function withdrawAccumulatedEth() external onlyOwner {
        uint256 amount = accumulatedEth;
        accumulatedEth = 0;
        
        (bool success, ) = payable(owner()).call{value: amount}("");
        require(success, "ETH withdrawal failed");
    }

    function isVirusToken(address token) external view returns (bool) {
        return tokens[token] != TokenState.NOT_CREATED;
    }

    function setCustomSlippageTolerance(
        address virusAddress,
        uint256 slippageBps
    ) external onlyOwner {
        require(tokens[virusAddress] != TokenState.NOT_CREATED, "Token does not exist");
        require(slippageBps <= MAX_SLIPPAGE_TOLERANCE, "Slippage too high");
        
        customSlippageTolerances[virusAddress] = slippageBps;
    }

    function getSlippageTolerance(address virusAddress) public view returns (uint256) {
        uint256 customTolerance = customSlippageTolerances[virusAddress];
        return customTolerance > 0 ? customTolerance : DEFAULT_SLIPPAGE_TOLERANCE;
    }

    function setWhitelistEndTime(uint256 _endTime) external onlyOwner onlyBeforeGame {
        require(_endTime > block.timestamp, "End time must be in the future");
        whitelistEndTime = _endTime;
    }

    function setMerkleRoot(bytes32 _merkleRoot) external onlyOwner onlyBeforeGame {
        merkleRoot = _merkleRoot;
    }

    function isWhitelisted(address account, bytes32[] calldata proof) public view returns (bool) {
        bytes32 leaf = keccak256(abi.encodePacked(account));
        return MerkleProof.verify(proof, merkleRoot, leaf);
    }

    function isWhitelistPeriod() public view returns (bool) {
        return block.timestamp < whitelistEndTime;
    }

    function setSellCooldownPeriod(uint256 newPeriod) external onlyOwner {
        require(newPeriod <= MAX_COOLDOWN_PERIOD, "Cooldown period too long");
        sellCooldownPeriod = newPeriod;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

pragma solidity >=0.5.0;

interface IUniswapV2Factory {
    event PairCreated(address indexed token0, address indexed token1, address pair, uint);

    function feeTo() external view returns (address);
    function feeToSetter() external view returns (address);

    function getPair(address tokenA, address tokenB) external view returns (address pair);
    function allPairs(uint) external view returns (address pair);
    function allPairsLength() external view returns (uint);

    function createPair(address tokenA, address tokenB) external returns (address pair);

    function setFeeTo(address) external;
    function setFeeToSetter(address) external;
}

pragma solidity >=0.5.0;

interface IUniswapV2Pair {
    event Approval(address indexed owner, address indexed spender, uint value);
    event Transfer(address indexed from, address indexed to, uint value);

    function name() external pure returns (string memory);
    function symbol() external pure returns (string memory);
    function decimals() external pure returns (uint8);
    function totalSupply() external view returns (uint);
    function balanceOf(address owner) external view returns (uint);
    function allowance(address owner, address spender) external view returns (uint);

    function approve(address spender, uint value) external returns (bool);
    function transfer(address to, uint value) external returns (bool);
    function transferFrom(address from, address to, uint value) external returns (bool);

    function DOMAIN_SEPARATOR() external view returns (bytes32);
    function PERMIT_TYPEHASH() external pure returns (bytes32);
    function nonces(address owner) external view returns (uint);

    function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;

    event Mint(address indexed sender, uint amount0, uint amount1);
    event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
    event Swap(
        address indexed sender,
        uint amount0In,
        uint amount1In,
        uint amount0Out,
        uint amount1Out,
        address indexed to
    );
    event Sync(uint112 reserve0, uint112 reserve1);

    function MINIMUM_LIQUIDITY() external pure returns (uint);
    function factory() external view returns (address);
    function token0() external view returns (address);
    function token1() external view returns (address);
    function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
    function price0CumulativeLast() external view returns (uint);
    function price1CumulativeLast() external view returns (uint);
    function kLast() external view returns (uint);

    function mint(address to) external returns (uint liquidity);
    function burn(address to) external returns (uint amount0, uint amount1);
    function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
    function skim(address to) external;
    function sync() external;

    function initialize(address, address) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

interface IVirusFactory {
    function isVirusToken(address token) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

pragma solidity >=0.6.2;

import './IUniswapV2Router01.sol';

interface IUniswapV2Router02 is IUniswapV2Router01 {
    function removeLiquidityETHSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountETH);
    function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountETH);

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
    function swapExactETHForTokensSupportingFeeOnTransferTokens(
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external payable;
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

/// @title IVirus Interface
/// @notice Interface for the Virus contract's airdrop functionality
interface IVirus {
    /// @notice Records infection tracking for airdrop transfers
    /// @param from The original sender of the tokens
    /// @param to The recipient of the tokens
    /// @param amount The amount of tokens being transferred
    function airdropTransfer(address from, address to, uint256 amount) external;

    /// @notice Burns tokens, reducing the total supply
    /// @param amount The amount of tokens to burn
    function burn(uint256 amount) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

interface IWETH {
    function withdraw(uint256) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

interface IGameManager {
    function isGameActive() external view returns (bool);
    function isGameEnded() external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
// This file was procedurally generated from scripts/generate/templates/MerkleProof.js.

pragma solidity ^0.8.20;

import {Hashes} from "./Hashes.sol";

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the Merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates Merkle trees that are safe
 * against this attack out of the box.
 *
 * IMPORTANT: Consider memory side-effects when using custom hashing functions
 * that access memory in an unsafe way.
 *
 * NOTE: This library supports proof verification for merkle trees built using
 * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
 * leaf inclusion in trees built using non-commutative hashing functions requires
 * additional logic that is not supported by this library.
 */
library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProof(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function processProof(
        bytes32[] memory proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function verifyCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProofCalldata(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function processProofCalldata(
        bytes32[] calldata proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProof(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 25 of 29 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

pragma solidity >=0.6.2;

interface IUniswapV2Router01 {
    function factory() external pure returns (address);
    function WETH() external pure returns (address);

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint amountADesired,
        uint amountBDesired,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB, uint liquidity);
    function addLiquidityETH(
        address token,
        uint amountTokenDesired,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
    function removeLiquidity(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETH(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountToken, uint amountETH);
    function removeLiquidityWithPermit(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETHWithPermit(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountToken, uint amountETH);
    function swapExactTokensForTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapTokensForExactTokens(
        uint amountOut,
        uint amountInMax,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);
    function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);

    function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
    function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
    function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
    function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
    function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 28 of 29 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol)

pragma solidity ^0.8.20;

/**
 * @dev Library of standard hash functions.
 *
 * _Available since v5.1._
 */
library Hashes {
    /**
     * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
     *
     * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     */
    function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
        return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a);
    }

    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        assembly ("memory-safe") {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

Settings
{
  "remappings": [
    "@uniswap-v2-core-1.0.1/=dependencies/@uniswap-v2-core-1.0.1/",
    "@uniswap-v2-periphery-1.1.0-beta.0/=dependencies/@uniswap-v2-periphery-1.1.0-beta.0/",
    "@openzeppelin/=lib/openzeppelin-contracts/",
    "forge-std/=lib/forge-std/src/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "viaIR": true,
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint256","name":"initialMint","type":"uint256"},{"internalType":"address","name":"_rewardWinnerPot","type":"address"},{"internalType":"address","name":"_uniswapFactory","type":"address"},{"internalType":"address","name":"_uniswapRouter","type":"address"},{"internalType":"address","name":"_infectionManager","type":"address"},{"internalType":"address","name":"_rewardFirstInfection","type":"address"},{"internalType":"address","name":"_gameManager","type":"address"},{"internalType":"address","name":"_devAddress","type":"address"},{"internalType":"address","name":"_winnerPot","type":"address"},{"internalType":"address","name":"_weth","type":"address"},{"internalType":"address","name":"_virusDrop","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"winnerPotFee","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"devFee","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"firstInfectedFee","type":"uint256"},{"indexed":false,"internalType":"address","name":"firstInfector","type":"address"}],"name":"FeesCollected","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"winnerPotAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"devAmount","type":"uint256"}],"name":"TaxesProcessed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"enabled","type":"bool"}],"name":"UniswapStateChanged","type":"event"},{"inputs":[],"name":"AFTER_GAME_DEV_FEE_PERCENTAGE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEV_FEE_PERCENTAGE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FEE_DENOMINATOR","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FIRST_INFECTED_FEE_PERCENTAGE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WINNER_POT_FEE_PERCENTAGE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"accumulatedDevFeeVirus","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"accumulatedWinnerPotFeeVirus","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"airdropTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"devAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gameManager","outputs":[{"internalType":"contract IGameManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"infectionManager","outputs":[{"internalType":"contract InfectionManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pairAddressWithWeth","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"processTaxes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewardFirstInfection","outputs":[{"internalType":"contract RewardFirstInfection","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardWinnerPot","outputs":[{"internalType":"contract RewardWinnerPot","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_slippagePercentage","type":"uint256"}],"name":"setSlippagePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"slippagePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"uniswap_factory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"uniswap_router","outputs":[{"internalType":"contract IUniswapV2Router02","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"virusDrop","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"virusFactory","outputs":[{"internalType":"address payable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"winnerPot","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

0x61016080604052346103ae57612b79803803809161001d8285610633565b83398101906101a0818303126103ae5780516001600160401b0381116103ae5782610049918301610656565b602082015190926001600160401b0382116103ae57610069918301610656565b9060408101519061007c606082016106c5565b91610089608083016106c5565b9161009660a082016106c5565b946100a360c083016106c5565b6100af60e084016106c5565b906100bd61010085016106c5565b916100cb61012086016106c5565b926100d961014087016106c5565b946100f46101806100ed6101608a016106c5565b98016106c5565b8c51909c6001600160401b0382116105305760035490600182811c92168015610629575b60208310146105105781601f8493116105b9575b50602090601f831160011461055157600092610546575b50508160011b916000199060031b1c1916176003555b8051906001600160401b0382116105305760045490600182811c92168015610526575b60208310146105105781601f8493116104a0575b50602090601f83116001146104385760009261042d575b50508160011b916000199060031b1c1916176004555b6001600160a01b031680156103dd57600580546001600160a01b0319169190911781556001600655600a600b55600f600c55600d55603260105533156103c75760009860209861020f604498336106d9565b600780546001600160a01b031990811633179091556001600160a01b039182166101205291811660805260a0899052918216610140529181166101005260088054831693821693909317909255600980549091169282169290921790915560e08290526040516364e329cb60e11b81523060048201529181166024830152909485938492165af19081156103bb5760009161037c575b5060c052600a80546001600160a01b0319166001600160a01b039290921691909117905560405161237a90816107df82396080518181816104c80152610d5a015260a051816102bc015260c051818181610545015281816114830152611b64015260e05181818161031f0152610d1601526101005181818161063b0152818161099401528181610c250152818161157b01528181611a6301528181611c6001526121060152610120518181816107740152610f5f015261014051818181610a76015281816116e501528181611dd901526122e10152f35b90506020813d6020116103b3575b8161039760209383610633565b810103126103ae576103a8906106c5565b386102a5565b600080fd5b3d915061038a565b6040513d6000823e3d90fd5b63ec442f0560e01b600052600060045260246000fd5b60405162461bcd60e51b815260206004820152602260248201527f47616d654d616e6167657220616464726573732063616e6e6f74206265207a65604482015261726f60f01b6064820152608490fd5b0151905038806101a7565b600460009081528281209350601f198516905b818110610488575090846001959493921061046f575b505050811b016004556101bd565b015160001960f88460031b161c19169055388080610461565b9293602060018192878601518155019501930161044b565b60046000529091507f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b601f840160051c81019160208510610506575b90601f859493920160051c01905b8181106104f75750610190565b600081558493506001016104ea565b90915081906104dc565b634e487b7160e01b600052602260045260246000fd5b91607f169161017c565b634e487b7160e01b600052604160045260246000fd5b015190503880610143565b600360009081528281209350601f198516905b8181106105a15750908460019594939210610588575b505050811b01600355610159565b015160001960f88460031b161c1916905538808061057a565b92936020600181928786015181550195019301610564565b60036000529091507fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b601f840160051c8101916020851061061f575b90601f859493920160051c01905b818110610610575061012c565b60008155849350600101610603565b90915081906105f5565b91607f1691610118565b601f909101601f19168101906001600160401b0382119082101761053057604052565b81601f820112156103ae578051906001600160401b038211610530576040519261068a601f8401601f191660200185610633565b828452602083830101116103ae5760005b8281106106b057505060206000918301015290565b8060208092840101518282870101520161069b565b51906001600160a01b03821682036103ae57565b600a549091906001600160a01b0316156106fa576106f8916000610701565b565b6106f89160005b6001600160a01b031690816107835760025483810180911161076d57600080516020612b59833981519152916020916002555b6001600160a01b031693846107555780600254036002555b604051908152a3565b8460005260008252604060002081815401905561074c565b634e487b7160e01b600052601160045260246000fd5b8160005260006020526040600020548381106107c157600080516020612b598339815191529184602092856000526000845203604060002055610734565b91905063391434e360e21b60005260045260245260445260646000fdfe6080604052600436101561001257600080fd5b6000803560e01c806301912f0e14610cc557806303baf06614610c5457806303d01ff314610c0f57806306fdde0314610b52578063095ea7b314610aa55780631310eb1314610a6057806315e3f8261461092e57806316d400111461091057806318160ddd146108f2578063235a59a0146108d457806323b872dd1461080457806329e900c5146107db5780632ae603f8146107bf578063313ce567146107a3578063396dc3021461075e5780633ad10ef61461073557806340c10f19146105cd57806342966c68146105925780634452d81c146105745780636ca934561461052f57806370a08231146104f75780639052be61146104b257806395d89b41146103a9578063a249e1ac14610380578063a9059cbb1461034e578063ad5c464814610309578063b0dbf47d146102eb578063b98d1fe2146102a6578063c6b052661461027d578063cfece5fa14610254578063d2093f1614610236578063d73792a914610219578063dd62ed3e146101b35763fc64dc7e1461019357600080fd5b346101b057806003193601126101b0576020600c54604051908152f35b80fd5b50346101b05760403660031901126101b0576101cd611145565b60243591906001600160a01b0383168303610215579060409160018060a01b031681526001602052209060018060a01b03166000526020526020604060002054604051908152f35b5080fd5b50346101b057806003193601126101b05760206040516103e88152f35b50346101b057806003193601126101b0576020600f54604051908152f35b50346101b057806003193601126101b057600a546040516001600160a01b039091168152602090f35b50346101b057806003193601126101b0576005546040516001600160a01b039091168152602090f35b50346101b057806003193601126101b0576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b50346101b057806003193601126101b0576020600b54604051908152f35b50346101b057806003193601126101b0576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b50346101b05760403660031901126101b05761037561036b611145565b602435903361138e565b602060405160018152f35b50346101b057806003193601126101b0576007546040516001600160a01b039091168152602090f35b50346101b057806003193601126101b0576040519080600454908160011c916001811680156104a8575b6020841081146104945783865290811561046d5750600114610410575b61040c846104008186038261119a565b604051918291826110fc565b0390f35b600481527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b939250905b80821061045357509091508101602001610400826103f0565b91926001816020925483858801015201910190929161043a565b60ff191660208087019190915292151560051b8501909201925061040091508390506103f0565b634e487b7160e01b83526022600452602483fd5b92607f16926103d3565b50346101b057806003193601126101b0576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b50346101b05760203660031901126101b0576020906040906001600160a01b0361051f611145565b1681528083522054604051908152f35b50346101b057806003193601126101b0576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b50346101b057806003193601126101b0576020601054604051908152f35b50346101b05760203660031901126101b05733156105b9576105b660043533611430565b80f35b634b637e8f60e11b81526004819052602490fd5b50346101b05760403660031901126101b0576105e7611145565b60075460243591906001600160a01b031633036106f057604051632836ff5b60e21b81526001600160a01b0382166004820181905260248201819052604482018490529060016064820152602081608481887f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165af180156106cf57610694575b501561068057906105b691611406565b63ec442f0560e01b83526004839052602483fd5b6020813d6020116106c7575b816106ad6020938361119a565b810103126106c3576106be9061134e565b610670565b8480fd5b3d91506106a0565b6040513d87823e3d90fd5b634e487b7160e01b600052602160045260246000fd5b60405162461bcd60e51b815260206004820152601a60248201527f4f6e6c79207669727573466163746f72792063616e206d696e740000000000006044820152606490fd5b50346101b057806003193601126101b0576008546040516001600160a01b039091168152602090f35b50346101b057806003193601126101b0576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b50346101b057806003193601126101b057602060405160128152f35b50346101b057806003193601126101b0576020604051600a8152f35b50346101b057806003193601126101b0576009546040516001600160a01b039091168152602090f35b50346101b05761081336611160565b6001600160a01b03831680855260016020818152604080882033600090815292529020549294929190820161084f575b5050610375935061138e565b8482106108b95780156108a55733156108915785604091610375975260016020522060018060a01b033316600052602052836040600020910390553880610843565b634a1406b160e11b86526004869052602486fd5b63e602df0560e01b86526004869052602486fd5b6064868684637dc7a0d960e11b835233600452602452604452fd5b50346101b057806003193601126101b0576020600d54604051908152f35b50346101b057806003193601126101b0576020600254604051908152f35b50346101b057806003193601126101b0576020600e54604051908152f35b50346101b05761093d36611160565b600a549091906001600160a01b03163303610a0d57604051632836ff5b60e21b81526001600160a01b03938416600482015292166024830152604482015261098482611344565b60648101829052602081608481857f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165af18015610a02576109cc575080f35b6020813d6020116109fa575b816109e56020938361119a565b81010312610215576109f69061134e565b5080f35b3d91506109d8565b6040513d84823e3d90fd5b60405162461bcd60e51b815260206004820152602560248201527f4f6e6c7920766972757344726f702063616e2063616c6c20746869732066756e60448201526431ba34b7b760d91b6064820152608490fd5b50346101b057806003193601126101b0576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b50346101b05760403660031901126101b057610abf611145565b602435903315610b3e576001600160a01b0316918215610b2a5760409033815260016020522082600052602052806040600020556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b634a1406b160e11b81526004819052602490fd5b63e602df0560e01b83526004839052602483fd5b50346101b057806003193601126101b0576040519080600354908160011c91600181168015610c05575b6020841081146104945783865290811561046d5750600114610ba85761040c846104008186038261119a565b600381527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b939250905b808210610beb57509091508101602001610400826103f0565b919260018160209254838588010152019101909291610bd2565b92607f1692610b7c565b50346101b057806003193601126101b0576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b50346101b05760203660031901126101b0576008546001600160a01b03163303610c815760043560105580f35b606460405162461bcd60e51b815260206004820152602060248201527f4f6e6c792074686520646576656c6f7065722063616e2073657420746869732e6044820152fd5b50346101b057806003193601126101b0576002600654146110ed57600260065560405190610cf460608361119a565b600282526020820160403682378251156110d957309052610d14826111d2565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169052600e54158015906110ce575b156110945760018060a01b037f00000000000000000000000000000000000000000000000000000000000000001690604051636eb1769f60e11b8152306004820152826024820152602081604481305afa908115610a02578291611062575b5015610feb575b600e5480610edb575b5090600f549081610dd0575b82600160065580f35b600f83905560405163d06ca61f60e01b8152838180610df38887600484016112bb565b0381855afa908115610ed05790610e11918591610eae575b506111d2565b51936010546103e803946103e88611610e9a57610e3285966103e8926112f8565b049160018060a01b036008541691813b15610e9657858094610e6c60405197889687958694635c11d79560e01b865242936004870161130b565b03925af18015610a0257610e81575b80610dc7565b81610e8b9161119a565b6101b0578038610e7b565b8580fd5b634e487b7160e01b85526011600452602485fd5b610eca91503d8087833e610ec2818361119a565b8101906111f8565b38610e0b565b6040513d86823e3d90fd5b600e82905560405163d06ca61f60e01b8152828180610efe8886600484016112bb565b0381875afa908115610fe05790610f1b918491610fcc57506111d2565b516010546103e803906103e88211610fb8576103e891610f3a916112f8565b0490833b15610fb457604051635c11d79560e01b815291839183918291610f939142917f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316918b916004870161130b565b038183875af18015610a025715610dbb5781610fae9161119a565b38610dbb565b8280fd5b634e487b7160e01b84526011600452602484fd5b610eca91503d8086833e610ec2818361119a565b6040513d85823e3d90fd5b301561104e578115610b2a5730815260016020526040812060018060a01b03831682526020526040812060001990558160405160001981527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203092a3610db2565b63e602df0560e01b81526004819052602490fd5b90506020813d60201161108c575b8161107d6020938361119a565b81010312610215575138610dab565b3d9150611070565b60405162461bcd60e51b81526020600482015260126024820152714e6f206665657320746f2070726f6365737360701b6044820152606490fd5b50600f541515610d4c565b634e487b7160e01b82526032600452602482fd5b633ee5aeb560e01b8152600490fd5b91909160208152825180602083015260005b81811061112f575060409293506000838284010152601f8019910116010190565b806020809287010151604082860101520161110e565b600435906001600160a01b038216820361115b57565b600080fd5b606090600319011261115b576004356001600160a01b038116810361115b57906024356001600160a01b038116810361115b579060443590565b90601f8019910116810190811067ffffffffffffffff8211176111bc57604052565b634e487b7160e01b600052604160045260246000fd5b8051600110156111e25760400190565b634e487b7160e01b600052603260045260246000fd5b60208183031261115b5780519067ffffffffffffffff821161115b57019080601f8301121561115b5781519167ffffffffffffffff83116111bc578260051b90602082019361124a604051958661119a565b845260208085019282010192831161115b57602001905b82821061126e5750505090565b8151815260209182019101611261565b906020808351928381520192019060005b81811061129c5750505090565b82516001600160a01b031684526020938401939092019160010161128f565b6040906112d293928152816020820152019061127e565b90565b919082039182116112e257565b634e487b7160e01b600052601160045260246000fd5b818102929181159184041417156112e257565b919260809361133092979695978452602084015260a0604084015260a083019061127e565b6001600160a01b0390951660608201520152565b600311156106da57565b5190811515820361115b57565b6001600160a01b0391821681529116602082015260408101919091526080810192919060609061138a83611344565b0152565b91906001600160a01b038316156113cf576001600160a01b038116156113b9576113b792611b10565b565b63ec442f0560e01b600052600060045260246000fd5b634b637e8f60e11b600052600060045260246000fd5b51906001600160701b038216820361115b57565b919082018092116112e257565b600a549091906001600160a01b031615611425576113b79160006121d4565b6113b79160006121d4565b600a546001600160a01b0380831694939260009290911685146114765784158015611b08575b611476576001611465826122bd565b8015611af9575b611af2575b611481575b6113b79394506121d4565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316948514808015611aea575b15611a125760075460405163e486033960e01b815230600482015290602090829060249082906001600160a01b03165afa8015610ed05784906119d6575b6002915061150181611344565b0361195257801561194657600460606001975b604051630240bc6b60e21b815292839182905afa908115610ed057849085926118e7575b506001600160701b0316151590816118d4575b5030151590816118cc575b5061156c575b506113b79394505b849350611476565b926115cb602060018060a01b037f000000000000000000000000000000000000000000000000000000000000000016976115a581611344565b6115ae81611344565b60405180938192632836ff5b60e21b83528632326004860161135b565b0381878b5af18015610ed057611895575b50829583916004602060018060a01b03600554166040519283809262c0ef2b60e41b82525afa90811561183857869161185b575b5015611843576103e8611625600c54836112f8565b04916103e8611636600b54846112f8565b04965b611776575b50604051978289528660208a01528360408a0152600160a01b60019003169788606082015260807f61c9336f7df53bf99a91087e589f90d08c3a2980c731f86d2a0b3d111ce6aab791a18261169387846113f9565b9061169d916113f9565b6116a6916112d5565b9481600e54906116b5916113f9565b600e5580600f54906116c6916113f9565b600f556116d2916113f9565b6116dd9030846121d4565b801561155c577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316803b15611772576040519663779a85f560e11b88526004880152816024880152838760448183855af1968715610ed0576113b7969761175a575b509061175391836121d4565b849361155c565b9361176a8161175394939661119a565b939091611747565b8380fd5b60606024916040519283809263073b852d60e21b82528a60048301525afa801561183857869187916117e4575b50806117d2575b1561163e5792509650600a8702878104600a1488151715610e9a576103e8900491963861163e565b506001600160a01b03811615156117aa565b9150506060813d606011611830575b816118006060938361119a565b81010312610e965761182a604061181683612330565b9261182360208201612330565b500161134e565b386117a3565b3d91506117f3565b6040513d88823e3d90fd5b84916103e8611854600d54846112f8565b0496611639565b90506020813d60201161188d575b816118766020938361119a565b81010312610e96576118879061134e565b38611610565b3d9150611869565b6020813d6020116118c4575b816118ae6020938361119a565b81010312611772576118bf9061134e565b6115dc565b3d91506118a1565b905038611556565b6001600160701b0391501615153861154b565b9150506060813d60601161193e575b816119036060938361119a565b8101031261177257611914816113e5565b6040611922602084016113e5565b92015163ffffffff8116036106c3576001600160701b03611538565b3d91506118f6565b60046060600297611514565b60405162461bcd60e51b815260206004820152605060248201527f446972656374207472616e7366657273207769746820556e697377617020706160448201527f69727320617265206e6f7420616c6c6f77656420756e74696c20626f6e64696e60648201526f19c818dd5c9d99481a5cc8195b99195960821b608482015260a490fd5b506020813d602011611a0a575b816119f06020938361119a565b8101031261177257516003811015611772576002906114f4565b3d91506119e3565b50600754611a5e955082906001600160a01b031615611ae2575b80611a38602092611344565b611a4181611344565b60405180978192632836ff5b60e21b83528787876004860161135b565b0381857f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165af18015610a0257611aa3575b6113b7939450611564565b6020853d602011611ada575b81611abc6020938361119a565b8101031261021557611ad16113b7949561134e565b50849350611a98565b3d9150611aaf565b506002611a2c565b5085156114b6565b5081611471565b50611b03836122bd565b61146c565b506001611456565b600a54600094939291906001600160a01b0380831691168114611b5657801580156121c3575b611b56576001611b45836122bd565b80156121b4575b6121ad575b611b62575b506113b79394506121d4565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169081149081801561219b575b156120b05760075460405163e486033960e01b815230600482015290602090829060249082906001600160a01b03165afa8015611e62578890612074575b60029150611be381611344565b0361195257600491801561206a5760606001925b604051630240bc6b60e21b815294859182905afa928315611e62578890899461200b575b506001600160701b031615159283611ff8575b506001600160a01b03851692308414159081611ff0575b50611c5c575b5050506113b79394505b8493611b56565b91947f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316929091611cc190602090611c9b81611344565b611ca481611344565b60405180938192632836ff5b60e21b83528732326004860161135b565b03818c885af18015611fe557611faa575b50879188936004602060018060a01b03600554166040519283809262c0ef2b60e41b82525afa908115611f9f578b91611f61575b5015611f49576103e8611d1b600c54846112f8565b04976103e8611d2c600b54856112f8565b04935b611e71575b5050611dcb91611da0611dc4927f61c9336f7df53bf99a91087e589f90d08c3a2980c731f86d2a0b3d111ce6aab76080604051978c89528560208a01528960408a015260018060a01b031697886060820152a1611d9a87611d95858d6113f9565b6113f9565b906112d5565b97611dad81600e546113f9565b600e55611dbc82600f546113f9565b600f556113f9565b30856121d4565b81611dd7575b80611c4b565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031690813b15611e6d576040519063779a85f560e11b82526004820152826024820152878160448183865af18015611e625797611e4a9392916113b79899611e52575b5050836121d4565b849338611dd1565b81611e5c9161119a565b38611e42565b6040513d8a823e3d90fd5b8780fd5b60609060246040518094819363073b852d60e21b835260048301525afa8015611f3e578a918b91611efa575b5080611ee8575b611eaf575b80611d34565b93509150600a8202828104600a1483151715611ed4576103e890049291611dcb611ea9565b634e487b7160e01b89526011600452602489fd5b506001600160a01b0381161515611ea4565b9150506060813d606011611f36575b81611f166060938361119a565b81010312611f3257611f2c604061181683612330565b38611e9d565b8980fd5b3d9150611f09565b6040513d8c823e3d90fd5b89976103e8611f5a600d54856112f8565b0493611d2f565b90506020813d602011611f97575b81611f7c6020938361119a565b81010312611f9357611f8d9061134e565b38611d06565b8a80fd5b3d9150611f6f565b6040513d8d823e3d90fd5b6020813d602011611fdd575b81611fc36020938361119a565b81010312611fd957611fd49061134e565b611cd2565b8880fd5b3d9150611fb6565b6040513d8b823e3d90fd5b905038611c45565b6001600160701b03161515925038611c2e565b9350506060833d606011612062575b816120276060938361119a565b81010312611e6d57612038836113e5565b6040612046602086016113e5565b94015163ffffffff811603611fd9576001600160701b03611c1b565b3d915061201a565b6060600292611bf7565b506020813d6020116120a8575b8161208e6020938361119a565b81010312611e6d57516003811015611e6d57600290611bd6565b3d9150612081565b5050600754612101959081906001600160a01b03858116911614612193575b806120db602092611344565b6120e481611344565b60405180988192632836ff5b60e21b83528888886004860161135b565b0381847f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165af1801561218657612147575b506113b7939450611c55565b6020863d60201161217e575b816121606020938361119a565b810103126101b057506121766113b7949561134e565b50849361213b565b3d9150612153565b50604051903d90823e3d90fd5b5060026120cf565b506001600160a01b0384168114611b98565b5085611b51565b506121be846122bd565b611b4c565b506001600160a01b03831615611b36565b6001600160a01b031690816122505760207fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91612213856002546113f9565b6002555b6001600160a01b031693846122385780600254036002555b604051908152a3565b8460005260008252604060002081815401905561222f565b8160005260006020526040600020548381106122a0577fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9184602092856000526000845203604060002055612217565b91905063391434e360e21b60005260045260245260445260646000fd5b6001600160a01b031630811461232a576009546001600160a01b0316811461232a577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316811461232a576008546001600160a01b03161461232557600090565b600190565b50600190565b51906001600160a01b038216820361115b5756fea26469706673582212206c33aa2cd3cb7c5d4f0db610f44cf3facf19ecea8fa1d20529f7b93baebb1b8a64736f6c634300081a0033ddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef00000000000000000000000000000000000000000000000000000000000001a000000000000000000000000000000000000000000000000000000000000001e000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001263063d3bdbb2b6ca211d1e1dbcdb628f687c840000000000000000000000008909dc15e40173ff4699343b6eb8132c65e18ec60000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad24000000000000000000000000586e4341004b2e48754863e72bdaccdb32181d4e0000000000000000000000008243d811ebe446ae78445eff043e03aeb0166ec0000000000000000000000000470d0b29347e88f5c3f3409664e86088a0780c9d0000000000000000000000009c659ebae0bf0279acd570e82e86073fa5afc6130000000000000000000000001263063d3bdbb2b6ca211d1e1dbcdb628f687c840000000000000000000000004200000000000000000000000000000000000006000000000000000000000000fef67b6b4bc12bfbe4bcac1ee2ede354c61a69800000000000000000000000000000000000000000000000000000000000000007416e7468726178000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007414e544852415800000000000000000000000000000000000000000000000000

Deployed Bytecode

0x6080604052600436101561001257600080fd5b6000803560e01c806301912f0e14610cc557806303baf06614610c5457806303d01ff314610c0f57806306fdde0314610b52578063095ea7b314610aa55780631310eb1314610a6057806315e3f8261461092e57806316d400111461091057806318160ddd146108f2578063235a59a0146108d457806323b872dd1461080457806329e900c5146107db5780632ae603f8146107bf578063313ce567146107a3578063396dc3021461075e5780633ad10ef61461073557806340c10f19146105cd57806342966c68146105925780634452d81c146105745780636ca934561461052f57806370a08231146104f75780639052be61146104b257806395d89b41146103a9578063a249e1ac14610380578063a9059cbb1461034e578063ad5c464814610309578063b0dbf47d146102eb578063b98d1fe2146102a6578063c6b052661461027d578063cfece5fa14610254578063d2093f1614610236578063d73792a914610219578063dd62ed3e146101b35763fc64dc7e1461019357600080fd5b346101b057806003193601126101b0576020600c54604051908152f35b80fd5b50346101b05760403660031901126101b0576101cd611145565b60243591906001600160a01b0383168303610215579060409160018060a01b031681526001602052209060018060a01b03166000526020526020604060002054604051908152f35b5080fd5b50346101b057806003193601126101b05760206040516103e88152f35b50346101b057806003193601126101b0576020600f54604051908152f35b50346101b057806003193601126101b057600a546040516001600160a01b039091168152602090f35b50346101b057806003193601126101b0576005546040516001600160a01b039091168152602090f35b50346101b057806003193601126101b0576040517f0000000000000000000000008909dc15e40173ff4699343b6eb8132c65e18ec66001600160a01b03168152602090f35b50346101b057806003193601126101b0576020600b54604051908152f35b50346101b057806003193601126101b0576040517f00000000000000000000000042000000000000000000000000000000000000066001600160a01b03168152602090f35b50346101b05760403660031901126101b05761037561036b611145565b602435903361138e565b602060405160018152f35b50346101b057806003193601126101b0576007546040516001600160a01b039091168152602090f35b50346101b057806003193601126101b0576040519080600454908160011c916001811680156104a8575b6020841081146104945783865290811561046d5750600114610410575b61040c846104008186038261119a565b604051918291826110fc565b0390f35b600481527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b939250905b80821061045357509091508101602001610400826103f0565b91926001816020925483858801015201910190929161043a565b60ff191660208087019190915292151560051b8501909201925061040091508390506103f0565b634e487b7160e01b83526022600452602483fd5b92607f16926103d3565b50346101b057806003193601126101b0576040517f0000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad246001600160a01b03168152602090f35b50346101b05760203660031901126101b0576020906040906001600160a01b0361051f611145565b1681528083522054604051908152f35b50346101b057806003193601126101b0576040517f000000000000000000000000bbadae91bc7b122ec2dd7060403d9eb75a5592466001600160a01b03168152602090f35b50346101b057806003193601126101b0576020601054604051908152f35b50346101b05760203660031901126101b05733156105b9576105b660043533611430565b80f35b634b637e8f60e11b81526004819052602490fd5b50346101b05760403660031901126101b0576105e7611145565b60075460243591906001600160a01b031633036106f057604051632836ff5b60e21b81526001600160a01b0382166004820181905260248201819052604482018490529060016064820152602081608481887f000000000000000000000000586e4341004b2e48754863e72bdaccdb32181d4e6001600160a01b03165af180156106cf57610694575b501561068057906105b691611406565b63ec442f0560e01b83526004839052602483fd5b6020813d6020116106c7575b816106ad6020938361119a565b810103126106c3576106be9061134e565b610670565b8480fd5b3d91506106a0565b6040513d87823e3d90fd5b634e487b7160e01b600052602160045260246000fd5b60405162461bcd60e51b815260206004820152601a60248201527f4f6e6c79207669727573466163746f72792063616e206d696e740000000000006044820152606490fd5b50346101b057806003193601126101b0576008546040516001600160a01b039091168152602090f35b50346101b057806003193601126101b0576040517f0000000000000000000000001263063d3bdbb2b6ca211d1e1dbcdb628f687c846001600160a01b03168152602090f35b50346101b057806003193601126101b057602060405160128152f35b50346101b057806003193601126101b0576020604051600a8152f35b50346101b057806003193601126101b0576009546040516001600160a01b039091168152602090f35b50346101b05761081336611160565b6001600160a01b03831680855260016020818152604080882033600090815292529020549294929190820161084f575b5050610375935061138e565b8482106108b95780156108a55733156108915785604091610375975260016020522060018060a01b033316600052602052836040600020910390553880610843565b634a1406b160e11b86526004869052602486fd5b63e602df0560e01b86526004869052602486fd5b6064868684637dc7a0d960e11b835233600452602452604452fd5b50346101b057806003193601126101b0576020600d54604051908152f35b50346101b057806003193601126101b0576020600254604051908152f35b50346101b057806003193601126101b0576020600e54604051908152f35b50346101b05761093d36611160565b600a549091906001600160a01b03163303610a0d57604051632836ff5b60e21b81526001600160a01b03938416600482015292166024830152604482015261098482611344565b60648101829052602081608481857f000000000000000000000000586e4341004b2e48754863e72bdaccdb32181d4e6001600160a01b03165af18015610a02576109cc575080f35b6020813d6020116109fa575b816109e56020938361119a565b81010312610215576109f69061134e565b5080f35b3d91506109d8565b6040513d84823e3d90fd5b60405162461bcd60e51b815260206004820152602560248201527f4f6e6c7920766972757344726f702063616e2063616c6c20746869732066756e60448201526431ba34b7b760d91b6064820152608490fd5b50346101b057806003193601126101b0576040517f0000000000000000000000008243d811ebe446ae78445eff043e03aeb0166ec06001600160a01b03168152602090f35b50346101b05760403660031901126101b057610abf611145565b602435903315610b3e576001600160a01b0316918215610b2a5760409033815260016020522082600052602052806040600020556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b634a1406b160e11b81526004819052602490fd5b63e602df0560e01b83526004839052602483fd5b50346101b057806003193601126101b0576040519080600354908160011c91600181168015610c05575b6020841081146104945783865290811561046d5750600114610ba85761040c846104008186038261119a565b600381527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b939250905b808210610beb57509091508101602001610400826103f0565b919260018160209254838588010152019101909291610bd2565b92607f1692610b7c565b50346101b057806003193601126101b0576040517f000000000000000000000000586e4341004b2e48754863e72bdaccdb32181d4e6001600160a01b03168152602090f35b50346101b05760203660031901126101b0576008546001600160a01b03163303610c815760043560105580f35b606460405162461bcd60e51b815260206004820152602060248201527f4f6e6c792074686520646576656c6f7065722063616e2073657420746869732e6044820152fd5b50346101b057806003193601126101b0576002600654146110ed57600260065560405190610cf460608361119a565b600282526020820160403682378251156110d957309052610d14826111d2565b7f00000000000000000000000042000000000000000000000000000000000000066001600160a01b03169052600e54158015906110ce575b156110945760018060a01b037f0000000000000000000000004752ba5dbc23f44d87826276bf6fd6b1c372ad241690604051636eb1769f60e11b8152306004820152826024820152602081604481305afa908115610a02578291611062575b5015610feb575b600e5480610edb575b5090600f549081610dd0575b82600160065580f35b600f83905560405163d06ca61f60e01b8152838180610df38887600484016112bb565b0381855afa908115610ed05790610e11918591610eae575b506111d2565b51936010546103e803946103e88611610e9a57610e3285966103e8926112f8565b049160018060a01b036008541691813b15610e9657858094610e6c60405197889687958694635c11d79560e01b865242936004870161130b565b03925af18015610a0257610e81575b80610dc7565b81610e8b9161119a565b6101b0578038610e7b565b8580fd5b634e487b7160e01b85526011600452602485fd5b610eca91503d8087833e610ec2818361119a565b8101906111f8565b38610e0b565b6040513d86823e3d90fd5b600e82905560405163d06ca61f60e01b8152828180610efe8886600484016112bb565b0381875afa908115610fe05790610f1b918491610fcc57506111d2565b516010546103e803906103e88211610fb8576103e891610f3a916112f8565b0490833b15610fb457604051635c11d79560e01b815291839183918291610f939142917f0000000000000000000000001263063d3bdbb2b6ca211d1e1dbcdb628f687c846001600160a01b0316918b916004870161130b565b038183875af18015610a025715610dbb5781610fae9161119a565b38610dbb565b8280fd5b634e487b7160e01b84526011600452602484fd5b610eca91503d8086833e610ec2818361119a565b6040513d85823e3d90fd5b301561104e578115610b2a5730815260016020526040812060018060a01b03831682526020526040812060001990558160405160001981527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203092a3610db2565b63e602df0560e01b81526004819052602490fd5b90506020813d60201161108c575b8161107d6020938361119a565b81010312610215575138610dab565b3d9150611070565b60405162461bcd60e51b81526020600482015260126024820152714e6f206665657320746f2070726f6365737360701b6044820152606490fd5b50600f541515610d4c565b634e487b7160e01b82526032600452602482fd5b633ee5aeb560e01b8152600490fd5b91909160208152825180602083015260005b81811061112f575060409293506000838284010152601f8019910116010190565b806020809287010151604082860101520161110e565b600435906001600160a01b038216820361115b57565b600080fd5b606090600319011261115b576004356001600160a01b038116810361115b57906024356001600160a01b038116810361115b579060443590565b90601f8019910116810190811067ffffffffffffffff8211176111bc57604052565b634e487b7160e01b600052604160045260246000fd5b8051600110156111e25760400190565b634e487b7160e01b600052603260045260246000fd5b60208183031261115b5780519067ffffffffffffffff821161115b57019080601f8301121561115b5781519167ffffffffffffffff83116111bc578260051b90602082019361124a604051958661119a565b845260208085019282010192831161115b57602001905b82821061126e5750505090565b8151815260209182019101611261565b906020808351928381520192019060005b81811061129c5750505090565b82516001600160a01b031684526020938401939092019160010161128f565b6040906112d293928152816020820152019061127e565b90565b919082039182116112e257565b634e487b7160e01b600052601160045260246000fd5b818102929181159184041417156112e257565b919260809361133092979695978452602084015260a0604084015260a083019061127e565b6001600160a01b0390951660608201520152565b600311156106da57565b5190811515820361115b57565b6001600160a01b0391821681529116602082015260408101919091526080810192919060609061138a83611344565b0152565b91906001600160a01b038316156113cf576001600160a01b038116156113b9576113b792611b10565b565b63ec442f0560e01b600052600060045260246000fd5b634b637e8f60e11b600052600060045260246000fd5b51906001600160701b038216820361115b57565b919082018092116112e257565b600a549091906001600160a01b031615611425576113b79160006121d4565b6113b79160006121d4565b600a546001600160a01b0380831694939260009290911685146114765784158015611b08575b611476576001611465826122bd565b8015611af9575b611af2575b611481575b6113b79394506121d4565b7f000000000000000000000000bbadae91bc7b122ec2dd7060403d9eb75a5592466001600160a01b0316948514808015611aea575b15611a125760075460405163e486033960e01b815230600482015290602090829060249082906001600160a01b03165afa8015610ed05784906119d6575b6002915061150181611344565b0361195257801561194657600460606001975b604051630240bc6b60e21b815292839182905afa908115610ed057849085926118e7575b506001600160701b0316151590816118d4575b5030151590816118cc575b5061156c575b506113b79394505b849350611476565b926115cb602060018060a01b037f000000000000000000000000586e4341004b2e48754863e72bdaccdb32181d4e16976115a581611344565b6115ae81611344565b60405180938192632836ff5b60e21b83528632326004860161135b565b0381878b5af18015610ed057611895575b50829583916004602060018060a01b03600554166040519283809262c0ef2b60e41b82525afa90811561183857869161185b575b5015611843576103e8611625600c54836112f8565b04916103e8611636600b54846112f8565b04965b611776575b50604051978289528660208a01528360408a0152600160a01b60019003169788606082015260807f61c9336f7df53bf99a91087e589f90d08c3a2980c731f86d2a0b3d111ce6aab791a18261169387846113f9565b9061169d916113f9565b6116a6916112d5565b9481600e54906116b5916113f9565b600e5580600f54906116c6916113f9565b600f556116d2916113f9565b6116dd9030846121d4565b801561155c577f0000000000000000000000008243d811ebe446ae78445eff043e03aeb0166ec06001600160a01b0316803b15611772576040519663779a85f560e11b88526004880152816024880152838760448183855af1968715610ed0576113b7969761175a575b509061175391836121d4565b849361155c565b9361176a8161175394939661119a565b939091611747565b8380fd5b60606024916040519283809263073b852d60e21b82528a60048301525afa801561183857869187916117e4575b50806117d2575b1561163e5792509650600a8702878104600a1488151715610e9a576103e8900491963861163e565b506001600160a01b03811615156117aa565b9150506060813d606011611830575b816118006060938361119a565b81010312610e965761182a604061181683612330565b9261182360208201612330565b500161134e565b386117a3565b3d91506117f3565b6040513d88823e3d90fd5b84916103e8611854600d54846112f8565b0496611639565b90506020813d60201161188d575b816118766020938361119a565b81010312610e96576118879061134e565b38611610565b3d9150611869565b6020813d6020116118c4575b816118ae6020938361119a565b81010312611772576118bf9061134e565b6115dc565b3d91506118a1565b905038611556565b6001600160701b0391501615153861154b565b9150506060813d60601161193e575b816119036060938361119a565b8101031261177257611914816113e5565b6040611922602084016113e5565b92015163ffffffff8116036106c3576001600160701b03611538565b3d91506118f6565b60046060600297611514565b60405162461bcd60e51b815260206004820152605060248201527f446972656374207472616e7366657273207769746820556e697377617020706160448201527f69727320617265206e6f7420616c6c6f77656420756e74696c20626f6e64696e60648201526f19c818dd5c9d99481a5cc8195b99195960821b608482015260a490fd5b506020813d602011611a0a575b816119f06020938361119a565b8101031261177257516003811015611772576002906114f4565b3d91506119e3565b50600754611a5e955082906001600160a01b031615611ae2575b80611a38602092611344565b611a4181611344565b60405180978192632836ff5b60e21b83528787876004860161135b565b0381857f000000000000000000000000586e4341004b2e48754863e72bdaccdb32181d4e6001600160a01b03165af18015610a0257611aa3575b6113b7939450611564565b6020853d602011611ada575b81611abc6020938361119a565b8101031261021557611ad16113b7949561134e565b50849350611a98565b3d9150611aaf565b506002611a2c565b5085156114b6565b5081611471565b50611b03836122bd565b61146c565b506001611456565b600a54600094939291906001600160a01b0380831691168114611b5657801580156121c3575b611b56576001611b45836122bd565b80156121b4575b6121ad575b611b62575b506113b79394506121d4565b7f000000000000000000000000bbadae91bc7b122ec2dd7060403d9eb75a5592466001600160a01b03169081149081801561219b575b156120b05760075460405163e486033960e01b815230600482015290602090829060249082906001600160a01b03165afa8015611e62578890612074575b60029150611be381611344565b0361195257600491801561206a5760606001925b604051630240bc6b60e21b815294859182905afa928315611e62578890899461200b575b506001600160701b031615159283611ff8575b506001600160a01b03851692308414159081611ff0575b50611c5c575b5050506113b79394505b8493611b56565b91947f000000000000000000000000586e4341004b2e48754863e72bdaccdb32181d4e6001600160a01b0316929091611cc190602090611c9b81611344565b611ca481611344565b60405180938192632836ff5b60e21b83528732326004860161135b565b03818c885af18015611fe557611faa575b50879188936004602060018060a01b03600554166040519283809262c0ef2b60e41b82525afa908115611f9f578b91611f61575b5015611f49576103e8611d1b600c54846112f8565b04976103e8611d2c600b54856112f8565b04935b611e71575b5050611dcb91611da0611dc4927f61c9336f7df53bf99a91087e589f90d08c3a2980c731f86d2a0b3d111ce6aab76080604051978c89528560208a01528960408a015260018060a01b031697886060820152a1611d9a87611d95858d6113f9565b6113f9565b906112d5565b97611dad81600e546113f9565b600e55611dbc82600f546113f9565b600f556113f9565b30856121d4565b81611dd7575b80611c4b565b7f0000000000000000000000008243d811ebe446ae78445eff043e03aeb0166ec06001600160a01b031690813b15611e6d576040519063779a85f560e11b82526004820152826024820152878160448183865af18015611e625797611e4a9392916113b79899611e52575b5050836121d4565b849338611dd1565b81611e5c9161119a565b38611e42565b6040513d8a823e3d90fd5b8780fd5b60609060246040518094819363073b852d60e21b835260048301525afa8015611f3e578a918b91611efa575b5080611ee8575b611eaf575b80611d34565b93509150600a8202828104600a1483151715611ed4576103e890049291611dcb611ea9565b634e487b7160e01b89526011600452602489fd5b506001600160a01b0381161515611ea4565b9150506060813d606011611f36575b81611f166060938361119a565b81010312611f3257611f2c604061181683612330565b38611e9d565b8980fd5b3d9150611f09565b6040513d8c823e3d90fd5b89976103e8611f5a600d54856112f8565b0493611d2f565b90506020813d602011611f97575b81611f7c6020938361119a565b81010312611f9357611f8d9061134e565b38611d06565b8a80fd5b3d9150611f6f565b6040513d8d823e3d90fd5b6020813d602011611fdd575b81611fc36020938361119a565b81010312611fd957611fd49061134e565b611cd2565b8880fd5b3d9150611fb6565b6040513d8b823e3d90fd5b905038611c45565b6001600160701b03161515925038611c2e565b9350506060833d606011612062575b816120276060938361119a565b81010312611e6d57612038836113e5565b6040612046602086016113e5565b94015163ffffffff811603611fd9576001600160701b03611c1b565b3d915061201a565b6060600292611bf7565b506020813d6020116120a8575b8161208e6020938361119a565b81010312611e6d57516003811015611e6d57600290611bd6565b3d9150612081565b5050600754612101959081906001600160a01b03858116911614612193575b806120db602092611344565b6120e481611344565b60405180988192632836ff5b60e21b83528888886004860161135b565b0381847f000000000000000000000000586e4341004b2e48754863e72bdaccdb32181d4e6001600160a01b03165af1801561218657612147575b506113b7939450611c55565b6020863d60201161217e575b816121606020938361119a565b810103126101b057506121766113b7949561134e565b50849361213b565b3d9150612153565b50604051903d90823e3d90fd5b5060026120cf565b506001600160a01b0384168114611b98565b5085611b51565b506121be846122bd565b611b4c565b506001600160a01b03831615611b36565b6001600160a01b031690816122505760207fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91612213856002546113f9565b6002555b6001600160a01b031693846122385780600254036002555b604051908152a3565b8460005260008252604060002081815401905561222f565b8160005260006020526040600020548381106122a0577fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9184602092856000526000845203604060002055612217565b91905063391434e360e21b60005260045260245260445260646000fd5b6001600160a01b031630811461232a576009546001600160a01b0316811461232a577f0000000000000000000000008243d811ebe446ae78445eff043e03aeb0166ec06001600160a01b0316811461232a576008546001600160a01b03161461232557600090565b600190565b50600190565b51906001600160a01b038216820361115b5756fea26469706673582212206c33aa2cd3cb7c5d4f0db610f44cf3facf19ecea8fa1d20529f7b93baebb1b8a64736f6c634300081a0033

Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.