ETH Price: $2,938.74 (-0.31%)
 

Overview

Max Total Supply

10,000 CLOAKIE

Holders

2,123

Market

Volume (24H)

N/A

Min Price (24H)

N/A

Max Price (24H)

N/A

Other Info

Balance
74 CLOAKIE
0xd91887ad762a245ed7e722c065d1cb93640fb258
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information

Contract Source Code Verified (Exact Match)

Contract Name:
CloakiesNFT

Compiler Version
v0.8.30+commit.73712a01

Optimization Enabled:
No with 200 runs

Other Settings:
prague EvmVersion
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import {ERC721} from "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";

/**
 * ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
 * ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
 * ::::::::::::::::::::::::::::-*#######*=:::::::::::::::::::::::
 * ::::::::::::::::::::::::::+###*******##*=:::::::::::::::::::::
 * :::::::::::::::::::::::-+##************##+::::::::::::::::::::
 * ::::::::::::::::::::::=##*******##%%%##**#+:::::::::::::::::::
 * ::::::::::::::::::::-*#*******#%%%%%%%%#**#+::::::::::::::::::
 * :::::::::::::::::::-*#******#%%%%%%%%%%%#*##=:::::::::::::::::
 * ::::::::::::::::::-*#******#%%%%%%%%%%%%%#*#*-::::::::::::::::
 * ::::::::::::::::::+##******%%%%%%%%%%%%%%#*##=::::::::::::::::
 * ::::::::::::::::::+#*******%%%%%%%%%%%%%%#*##=::::::::::::::::
 * ::::::::::::::::::-*##******#%%%%%%%%%%%#**#*:::::::::::::::::
 * :::::::::::::::::::=#####*****##%%%%%%#####+::::::::::::::::::
 * :::::::::::::::::-+##***###*******###***####=:::::::::::::::::
 * ::::::::::::::::-*#****************##******##=::::::::::::::::
 * ::::::::::::::::+##****************##*******#*=:::::::::::::::
 * :::::::::::::::=##*****************##********#+:::::::::::::::
 * ::::::::::::::-*#******************##********#*-::::::::::::::
 * ::::::::::::::=##******************##*********#+::::::::::::::
 * :::::::::::::-##********#**********##*********#+::::::::::::::
 * ::::::::::::-##********##*********###*********#*-:::::::::::::
 * :::::::::::=##*******###**********###*********#*-:::::::::::::
 * :::::::::-*##*******###**********####*********#+::::::::::::::
 * ::::::::::+##########************###*********#*-::::::::::::::
 * :::::::::::::====+###***********####******###+-:::::::::::::::
 * :::::::::::::::::::-+##########*=:=######*+-::::::::::::::::::
 * ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
 * ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
 * @title CloakiesNFT
 * @dev ERC721 NFT contract for Cloakies collection
 * @author Created by https://staycloaked.xyz
 */
contract CloakiesNFT is ERC721, Ownable, ReentrancyGuard {
    uint256 private constant MAX_SUPPLY = 10000;
    uint256 private constant MAX_NAME_LENGTH = 50;
    uint256 public immutable MAX_TOKENS_PER_ADDRESS;
    string private _baseTokenUri;
    uint256 private _nextTokenId;
    uint256 public mintPrice;
    bool public mintingEnabled;

    mapping(uint256 => string) public tokenNames;

    event Minted(address indexed to, uint256 indexed tokenId);
    event TokenNamed(uint256 indexed tokenId, string name, address indexed owner);
    event MintingEnabled();
    event MintingPaused();

    /**
     * @dev Initializes the contract with collection details and sets minting to disabled
     * @param _name Name of the NFT collection
     * @param _symbol Symbol of the NFT collection
     * @param _initialOwner Address that will own the contract
     * @param _baseUri Base URI for token metadata
     * @param _mintPrice Price in wei required to mint a token
     * @param _maxTokensPerAddress Maximum number of tokens an address can own
     */
    constructor(
        string memory _name,
        string memory _symbol,
        address _initialOwner,
        string memory _baseUri,
        uint256 _mintPrice,
        uint256 _maxTokensPerAddress
    ) ERC721(_name, _symbol) Ownable(_initialOwner) {
        _baseTokenUri = _baseUri;
        mintPrice = _mintPrice;
        MAX_TOKENS_PER_ADDRESS = _maxTokensPerAddress;
        _nextTokenId = 1;
        mintingEnabled = false;
    }

    /**
     * @dev Mint function - mints tokens to msg.sender
     *
     * @notice Minting Cloakies requires a minting fee per token.
     * Each address can own a maximum number of tokens as set in the constructor. An address can purchase more tokens
     * if they move the minted tokens to a different address.
     * To mint a single token, call this function with quantity = 1.
     *
     * @param quantity Number of tokens to mint (1-10)
     * @return firstTokenId The ID of the first newly minted token
     */
    function mint(uint256 quantity) public payable nonReentrant returns (uint256) {
        require(mintingEnabled, "CloakiesNFT: Minting is disabled");
        require(quantity > 0 && quantity <= 10, "CloakiesNFT: Quantity must be between 1 and 10");
        require(msg.value == mintPrice * quantity, "CloakiesNFT: Must send exact mint price for quantity");
        require(
            balanceOf(msg.sender) + quantity <= MAX_TOKENS_PER_ADDRESS,
            "CloakiesNFT: Would exceed max tokens per address"
        );
        require(_nextTokenId + quantity - 1 <= MAX_SUPPLY, "CloakiesNFT: Max supply reached");

        uint256 firstTokenId = _nextTokenId;

        for (uint256 i = 0; i < quantity; i++) {
            uint256 tokenId = _nextTokenId;
            _nextTokenId++;
            _safeMint(msg.sender, tokenId);
            emit Minted(msg.sender, tokenId);
        }

        return firstTokenId;
    }

    /**
     * @dev Enable minting - only callable by the owner
     * @notice Minting is disabled by default and must be enabled by the owner before users can mint
     */
    function enableMinting() public onlyOwner {
        mintingEnabled = true;
        emit MintingEnabled();
    }

    /**
     * @dev Pause minting - only callable by the owner
     * @notice Temporarily disables minting. Can be re-enabled by calling enableMinting()
     */
    function pauseMinting() public onlyOwner {
        mintingEnabled = false;
        emit MintingPaused();
    }

    /**
     * @dev Withdraw all ETH from the contract - only callable by the owner
     * @notice Transfers all accumulated minting fees to the contract owner
     */
    function withdraw() public onlyOwner nonReentrant {
        uint256 balance = address(this).balance;
        require(balance > 0, "CloakiesNFT: No funds to withdraw");

        address ownerAddress = owner();
        (bool success,) = ownerAddress.call{value: balance}("");
        require(success, "CloakiesNFT: Withdrawal failed");
    }

    /**
     * @dev Get the max supply
     * @return Maximum number of tokens that can be minted
     */
    function maxSupply() public pure returns (uint256) {
        return MAX_SUPPLY;
    }

    /**
     * @dev Get the current token count
     * @return Current number of minted tokens
     */
    function totalSupply() public view returns (uint256) {
        return _nextTokenId - 1;
    }

    /**
     * @dev Override baseURI to return the base URI set in constructor
     */
    function _baseURI() internal view override returns (string memory) {
        return _baseTokenUri;
    }

    /**
     * @dev Set the name for a token - only callable by the token owner
     * @param tokenId The ID of the token to name
     * @param name The name to assign to the token (max 50 characters, empty string allowed to clear name)
     */
    function setName(uint256 tokenId, string memory name) public {
        require(ownerOf(tokenId) == msg.sender, "CloakiesNFT: Only token owner can set name");
        require(bytes(name).length <= MAX_NAME_LENGTH, "CloakiesNFT: Name exceeds maximum length");
        tokenNames[tokenId] = name;
        emit TokenNamed(tokenId, name, msg.sender);
    }

    /**
     * @dev Get the name of a token
     * @param tokenId The ID of the token
     * @return The name of the token, or empty string if not named
     */
    function getName(uint256 tokenId) public view returns (string memory) {
        _requireOwned(tokenId);
        return tokenNames[tokenId];
    }

    /**
     * @dev Override required by Solidity
     */
    function supportsInterface(bytes4 interfaceId) public view override(ERC721) returns (bool) {
        return super.supportsInterface(interfaceId);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (token/ERC721/ERC721.sol)

pragma solidity ^0.8.24;

import {IERC721} from "./IERC721.sol";
import {IERC721Metadata} from "./extensions/IERC721Metadata.sol";
import {ERC721Utils} from "./utils/ERC721Utils.sol";
import {Context} from "../../utils/Context.sol";
import {Strings} from "../../utils/Strings.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC-721] Non-Fungible Token Standard, including
 * the Metadata extension, but not including the Enumerable extension, which is available separately as
 * {ERC721Enumerable}.
 */
abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors {
    using Strings for uint256;

    // Token name
    string private _name;

    // Token symbol
    string private _symbol;

    mapping(uint256 tokenId => address) private _owners;

    mapping(address owner => uint256) private _balances;

    mapping(uint256 tokenId => address) private _tokenApprovals;

    mapping(address owner => mapping(address operator => bool)) private _operatorApprovals;

    /**
     * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC721).interfaceId ||
            interfaceId == type(IERC721Metadata).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /// @inheritdoc IERC721
    function balanceOf(address owner) public view virtual returns (uint256) {
        if (owner == address(0)) {
            revert ERC721InvalidOwner(address(0));
        }
        return _balances[owner];
    }

    /// @inheritdoc IERC721
    function ownerOf(uint256 tokenId) public view virtual returns (address) {
        return _requireOwned(tokenId);
    }

    /// @inheritdoc IERC721Metadata
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /// @inheritdoc IERC721Metadata
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /// @inheritdoc IERC721Metadata
    function tokenURI(uint256 tokenId) public view virtual returns (string memory) {
        _requireOwned(tokenId);

        string memory baseURI = _baseURI();
        return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : "";
    }

    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return "";
    }

    /// @inheritdoc IERC721
    function approve(address to, uint256 tokenId) public virtual {
        _approve(to, tokenId, _msgSender());
    }

    /// @inheritdoc IERC721
    function getApproved(uint256 tokenId) public view virtual returns (address) {
        _requireOwned(tokenId);

        return _getApproved(tokenId);
    }

    /// @inheritdoc IERC721
    function setApprovalForAll(address operator, bool approved) public virtual {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /// @inheritdoc IERC721
    function isApprovedForAll(address owner, address operator) public view virtual returns (bool) {
        return _operatorApprovals[owner][operator];
    }

    /// @inheritdoc IERC721
    function transferFrom(address from, address to, uint256 tokenId) public virtual {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        // Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists
        // (from != 0). Therefore, it is not needed to verify that the return value is not 0 here.
        address previousOwner = _update(to, tokenId, _msgSender());
        if (previousOwner != from) {
            revert ERC721IncorrectOwner(from, tokenId, previousOwner);
        }
    }

    /// @inheritdoc IERC721
    function safeTransferFrom(address from, address to, uint256 tokenId) public {
        safeTransferFrom(from, to, tokenId, "");
    }

    /// @inheritdoc IERC721
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual {
        transferFrom(from, to, tokenId);
        ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
    }

    /**
     * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
     *
     * IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the
     * core ERC-721 logic MUST be matched with the use of {_increaseBalance} to keep balances
     * consistent with ownership. The invariant to preserve is that for any address `a` the value returned by
     * `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`.
     */
    function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
        return _owners[tokenId];
    }

    /**
     * @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted.
     */
    function _getApproved(uint256 tokenId) internal view virtual returns (address) {
        return _tokenApprovals[tokenId];
    }

    /**
     * @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in
     * particular (ignoring whether it is owned by `owner`).
     *
     * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
     * assumption.
     */
    function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) {
        return
            spender != address(0) &&
            (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender);
    }

    /**
     * @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner.
     * Reverts if:
     * - `spender` does not have approval from `owner` for `tokenId`.
     * - `spender` does not have approval to manage all of `owner`'s assets.
     *
     * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
     * assumption.
     */
    function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual {
        if (!_isAuthorized(owner, spender, tokenId)) {
            if (owner == address(0)) {
                revert ERC721NonexistentToken(tokenId);
            } else {
                revert ERC721InsufficientApproval(spender, tokenId);
            }
        }
    }

    /**
     * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
     *
     * NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that
     * a uint256 would ever overflow from increments when these increments are bounded to uint128 values.
     *
     * WARNING: Increasing an account's balance using this function tends to be paired with an override of the
     * {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership
     * remain consistent with one another.
     */
    function _increaseBalance(address account, uint128 value) internal virtual {
        unchecked {
            _balances[account] += value;
        }
    }

    /**
     * @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner
     * (or `to`) is the zero address. Returns the owner of the `tokenId` before the update.
     *
     * The `auth` argument is optional. If the value passed is non 0, then this function will check that
     * `auth` is either the owner of the token, or approved to operate on the token (by the owner).
     *
     * Emits a {Transfer} event.
     *
     * NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}.
     */
    function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) {
        address from = _ownerOf(tokenId);

        // Perform (optional) operator check
        if (auth != address(0)) {
            _checkAuthorized(from, auth, tokenId);
        }

        // Execute the update
        if (from != address(0)) {
            // Clear approval. No need to re-authorize or emit the Approval event
            _approve(address(0), tokenId, address(0), false);

            unchecked {
                _balances[from] -= 1;
            }
        }

        if (to != address(0)) {
            unchecked {
                _balances[to] += 1;
            }
        }

        _owners[tokenId] = to;

        emit Transfer(from, to, tokenId);

        return from;
    }

    /**
     * @dev Mints `tokenId` and transfers it to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - `to` cannot be the zero address.
     *
     * Emits a {Transfer} event.
     */
    function _mint(address to, uint256 tokenId) internal {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        address previousOwner = _update(to, tokenId, address(0));
        if (previousOwner != address(0)) {
            revert ERC721InvalidSender(address(0));
        }
    }

    /**
     * @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance.
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeMint(address to, uint256 tokenId) internal {
        _safeMint(to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
        _mint(to, tokenId);
        ERC721Utils.checkOnERC721Received(_msgSender(), address(0), to, tokenId, data);
    }

    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     * This is an internal function that does not check if the sender is authorized to operate on the token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId) internal {
        address previousOwner = _update(address(0), tokenId, address(0));
        if (previousOwner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        }
    }

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     *
     * Emits a {Transfer} event.
     */
    function _transfer(address from, address to, uint256 tokenId) internal {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        address previousOwner = _update(to, tokenId, address(0));
        if (previousOwner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        } else if (previousOwner != from) {
            revert ERC721IncorrectOwner(from, tokenId, previousOwner);
        }
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients
     * are aware of the ERC-721 standard to prevent tokens from being forever locked.
     *
     * `data` is additional data, it has no specified format and it is sent in call to `to`.
     *
     * This internal function is like {safeTransferFrom} in the sense that it invokes
     * {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g.
     * implement alternative mechanisms to perform token transfer, such as signature-based.
     *
     * Requirements:
     *
     * - `tokenId` token must exist and be owned by `from`.
     * - `to` cannot be the zero address.
     * - `from` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeTransfer(address from, address to, uint256 tokenId) internal {
        _safeTransfer(from, to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
        _transfer(from, to, tokenId);
        ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
    }

    /**
     * @dev Approve `to` to operate on `tokenId`
     *
     * The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is
     * either the owner of the token, or approved to operate on all tokens held by this owner.
     *
     * Emits an {Approval} event.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address to, uint256 tokenId, address auth) internal {
        _approve(to, tokenId, auth, true);
    }

    /**
     * @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not
     * emitted in the context of transfers.
     */
    function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual {
        // Avoid reading the owner unless necessary
        if (emitEvent || auth != address(0)) {
            address owner = _requireOwned(tokenId);

            // We do not use _isAuthorized because single-token approvals should not be able to call approve
            if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) {
                revert ERC721InvalidApprover(auth);
            }

            if (emitEvent) {
                emit Approval(owner, to, tokenId);
            }
        }

        _tokenApprovals[tokenId] = to;
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Requirements:
     * - operator can't be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
        if (operator == address(0)) {
            revert ERC721InvalidOperator(operator);
        }
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned).
     * Returns the owner.
     *
     * Overrides to ownership logic should be done to {_ownerOf}.
     */
    function _requireOwned(uint256 tokenId) internal view returns (address) {
        address owner = _ownerOf(tokenId);
        if (owner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        }
        return owner;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 *
 * IMPORTANT: Deprecated. This storage-based reentrancy guard will be removed and replaced
 * by the {ReentrancyGuardTransient} variant in v6.0.
 *
 * @custom:stateless
 */
abstract contract ReentrancyGuard {
    using StorageSlot for bytes32;

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant REENTRANCY_GUARD_STORAGE =
        0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;

    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _reentrancyGuardStorageSlot().getUint256Slot().value = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    /**
     * @dev A `view` only version of {nonReentrant}. Use to block view functions
     * from being called, preventing reading from inconsistent contract state.
     *
     * CAUTION: This is a "view" modifier and does not change the reentrancy
     * status. Use it only on view functions. For payable or non-payable functions,
     * use the standard {nonReentrant} modifier instead.
     */
    modifier nonReentrantView() {
        _nonReentrantBeforeView();
        _;
    }

    function _nonReentrantBeforeView() private view {
        if (_reentrancyGuardEntered()) {
            revert ReentrancyGuardReentrantCall();
        }
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        _nonReentrantBeforeView();

        // Any calls to nonReentrant after this point will fail
        _reentrancyGuardStorageSlot().getUint256Slot().value = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _reentrancyGuardStorageSlot().getUint256Slot().value = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _reentrancyGuardStorageSlot().getUint256Slot().value == ENTERED;
    }

    function _reentrancyGuardStorageSlot() internal pure virtual returns (bytes32) {
        return REENTRANCY_GUARD_STORAGE;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/IERC721.sol)

pragma solidity >=0.6.2;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC-721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity >=0.6.2;

import {IERC721} from "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (token/ERC721/utils/ERC721Utils.sol)

pragma solidity ^0.8.20;

import {IERC721Receiver} from "../IERC721Receiver.sol";
import {IERC721Errors} from "../../../interfaces/draft-IERC6093.sol";

/**
 * @dev Library that provides common ERC-721 utility functions.
 *
 * See https://eips.ethereum.org/EIPS/eip-721[ERC-721].
 *
 * _Available since v5.1._
 */
library ERC721Utils {
    /**
     * @dev Performs an acceptance check for the provided `operator` by calling {IERC721Receiver-onERC721Received}
     * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
     *
     * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
     * Otherwise, the recipient must implement {IERC721Receiver-onERC721Received} and return the acceptance magic value to accept
     * the transfer.
     */
    function checkOnERC721Received(
        address operator,
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) internal {
        if (to.code.length > 0) {
            try IERC721Receiver(to).onERC721Received(operator, from, tokenId, data) returns (bytes4 retval) {
                if (retval != IERC721Receiver.onERC721Received.selector) {
                    // Token rejected
                    revert IERC721Errors.ERC721InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    // non-IERC721Receiver implementer
                    revert IERC721Errors.ERC721InvalidReceiver(to);
                } else {
                    assembly ("memory-safe") {
                        revert(add(reason, 0x20), mload(reason))
                    }
                }
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/Strings.sol)

pragma solidity ^0.8.24;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
import {Bytes} from "./Bytes.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(add(buffer, 0x20), length)
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Converts a `bytes` buffer to its ASCII `string` hexadecimal representation.
     */
    function toHexString(bytes memory input) internal pure returns (string memory) {
        unchecked {
            bytes memory buffer = new bytes(2 * input.length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 0; i < input.length; ++i) {
                uint8 v = uint8(input[i]);
                buffer[2 * i + 2] = HEX_DIGITS[v >> 4];
                buffer[2 * i + 3] = HEX_DIGITS[v & 0xf];
            }
            return string(buffer);
        }
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return Bytes.equal(bytes(a), bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     *
     * NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
     * RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
     * characters that are not in this range, but other tooling may provide different results.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;

        for (uint256 i = 0; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }

        return string(output);
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(add(buffer, 0x20), offset))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (interfaces/draft-IERC6093.sol)

pragma solidity >=0.8.4;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-721.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 14 of 19 : IERC721Receiver.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity >=0.5.0;

/**
 * @title ERC-721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC-721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

File 15 of 19 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `condition ? a : b`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `condition ? a : b`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }

    /**
     * @dev Counts the number of leading zero bits in a uint256.
     */
    function clz(uint256 x) internal pure returns (uint256) {
        return ternary(x == 0, 256, 255 - log2(x));
    }
}

File 16 of 19 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/Bytes.sol)

pragma solidity ^0.8.24;

import {Math} from "./math/Math.sol";

/**
 * @dev Bytes operations.
 */
library Bytes {
    /**
     * @dev Forward search for `s` in `buffer`
     * * If `s` is present in the buffer, returns the index of the first instance
     * * If `s` is not present in the buffer, returns type(uint256).max
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf[Javascript's `Array.indexOf`]
     */
    function indexOf(bytes memory buffer, bytes1 s) internal pure returns (uint256) {
        return indexOf(buffer, s, 0);
    }

    /**
     * @dev Forward search for `s` in `buffer` starting at position `pos`
     * * If `s` is present in the buffer (at or after `pos`), returns the index of the next instance
     * * If `s` is not present in the buffer (at or after `pos`), returns type(uint256).max
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf[Javascript's `Array.indexOf`]
     */
    function indexOf(bytes memory buffer, bytes1 s, uint256 pos) internal pure returns (uint256) {
        uint256 length = buffer.length;
        for (uint256 i = pos; i < length; ++i) {
            if (bytes1(_unsafeReadBytesOffset(buffer, i)) == s) {
                return i;
            }
        }
        return type(uint256).max;
    }

    /**
     * @dev Backward search for `s` in `buffer`
     * * If `s` is present in the buffer, returns the index of the last instance
     * * If `s` is not present in the buffer, returns type(uint256).max
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/lastIndexOf[Javascript's `Array.lastIndexOf`]
     */
    function lastIndexOf(bytes memory buffer, bytes1 s) internal pure returns (uint256) {
        return lastIndexOf(buffer, s, type(uint256).max);
    }

    /**
     * @dev Backward search for `s` in `buffer` starting at position `pos`
     * * If `s` is present in the buffer (at or before `pos`), returns the index of the previous instance
     * * If `s` is not present in the buffer (at or before `pos`), returns type(uint256).max
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/lastIndexOf[Javascript's `Array.lastIndexOf`]
     */
    function lastIndexOf(bytes memory buffer, bytes1 s, uint256 pos) internal pure returns (uint256) {
        unchecked {
            uint256 length = buffer.length;
            for (uint256 i = Math.min(Math.saturatingAdd(pos, 1), length); i > 0; --i) {
                if (bytes1(_unsafeReadBytesOffset(buffer, i - 1)) == s) {
                    return i - 1;
                }
            }
            return type(uint256).max;
        }
    }

    /**
     * @dev Copies the content of `buffer`, from `start` (included) to the end of `buffer` into a new bytes object in
     * memory.
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice[Javascript's `Array.slice`]
     */
    function slice(bytes memory buffer, uint256 start) internal pure returns (bytes memory) {
        return slice(buffer, start, buffer.length);
    }

    /**
     * @dev Copies the content of `buffer`, from `start` (included) to `end` (excluded) into a new bytes object in
     * memory. The `end` argument is truncated to the length of the `buffer`.
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice[Javascript's `Array.slice`]
     */
    function slice(bytes memory buffer, uint256 start, uint256 end) internal pure returns (bytes memory) {
        // sanitize
        end = Math.min(end, buffer.length);
        start = Math.min(start, end);

        // allocate and copy
        bytes memory result = new bytes(end - start);
        assembly ("memory-safe") {
            mcopy(add(result, 0x20), add(add(buffer, 0x20), start), sub(end, start))
        }

        return result;
    }

    /**
     * @dev Moves the content of `buffer`, from `start` (included) to the end of `buffer` to the start of that buffer.
     *
     * NOTE: This function modifies the provided buffer in place. If you need to preserve the original buffer, use {slice} instead
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice[Javascript's `Array.splice`]
     */
    function splice(bytes memory buffer, uint256 start) internal pure returns (bytes memory) {
        return splice(buffer, start, buffer.length);
    }

    /**
     * @dev Moves the content of `buffer`, from `start` (included) to end (excluded) to the start of that buffer. The
     * `end` argument is truncated to the length of the `buffer`.
     *
     * NOTE: This function modifies the provided buffer in place. If you need to preserve the original buffer, use {slice} instead
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice[Javascript's `Array.splice`]
     */
    function splice(bytes memory buffer, uint256 start, uint256 end) internal pure returns (bytes memory) {
        // sanitize
        end = Math.min(end, buffer.length);
        start = Math.min(start, end);

        // allocate and copy
        assembly ("memory-safe") {
            mcopy(add(buffer, 0x20), add(add(buffer, 0x20), start), sub(end, start))
            mstore(buffer, sub(end, start))
        }

        return buffer;
    }

    /**
     * @dev Concatenate an array of bytes into a single bytes object.
     *
     * For fixed bytes types, we recommend using the solidity built-in `bytes.concat` or (equivalent)
     * `abi.encodePacked`.
     *
     * NOTE: this could be done in assembly with a single loop that expands starting at the FMP, but that would be
     * significantly less readable. It might be worth benchmarking the savings of the full-assembly approach.
     */
    function concat(bytes[] memory buffers) internal pure returns (bytes memory) {
        uint256 length = 0;
        for (uint256 i = 0; i < buffers.length; ++i) {
            length += buffers[i].length;
        }

        bytes memory result = new bytes(length);

        uint256 offset = 0x20;
        for (uint256 i = 0; i < buffers.length; ++i) {
            bytes memory input = buffers[i];
            assembly ("memory-safe") {
                mcopy(add(result, offset), add(input, 0x20), mload(input))
            }
            unchecked {
                offset += input.length;
            }
        }

        return result;
    }

    /**
     * @dev Returns true if the two byte buffers are equal.
     */
    function equal(bytes memory a, bytes memory b) internal pure returns (bool) {
        return a.length == b.length && keccak256(a) == keccak256(b);
    }

    /**
     * @dev Reverses the byte order of a bytes32 value, converting between little-endian and big-endian.
     * Inspired by https://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel[Reverse Parallel]
     */
    function reverseBytes32(bytes32 value) internal pure returns (bytes32) {
        value = // swap bytes
            ((value >> 8) & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) |
            ((value & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) << 8);
        value = // swap 2-byte long pairs
            ((value >> 16) & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) |
            ((value & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) << 16);
        value = // swap 4-byte long pairs
            ((value >> 32) & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) |
            ((value & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) << 32);
        value = // swap 8-byte long pairs
            ((value >> 64) & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) |
            ((value & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) << 64);
        return (value >> 128) | (value << 128); // swap 16-byte long pairs
    }

    /// @dev Same as {reverseBytes32} but optimized for 128-bit values.
    function reverseBytes16(bytes16 value) internal pure returns (bytes16) {
        value = // swap bytes
            ((value & 0xFF00FF00FF00FF00FF00FF00FF00FF00) >> 8) |
            ((value & 0x00FF00FF00FF00FF00FF00FF00FF00FF) << 8);
        value = // swap 2-byte long pairs
            ((value & 0xFFFF0000FFFF0000FFFF0000FFFF0000) >> 16) |
            ((value & 0x0000FFFF0000FFFF0000FFFF0000FFFF) << 16);
        value = // swap 4-byte long pairs
            ((value & 0xFFFFFFFF00000000FFFFFFFF00000000) >> 32) |
            ((value & 0x00000000FFFFFFFF00000000FFFFFFFF) << 32);
        return (value >> 64) | (value << 64); // swap 8-byte long pairs
    }

    /// @dev Same as {reverseBytes32} but optimized for 64-bit values.
    function reverseBytes8(bytes8 value) internal pure returns (bytes8) {
        value = ((value & 0xFF00FF00FF00FF00) >> 8) | ((value & 0x00FF00FF00FF00FF) << 8); // swap bytes
        value = ((value & 0xFFFF0000FFFF0000) >> 16) | ((value & 0x0000FFFF0000FFFF) << 16); // swap 2-byte long pairs
        return (value >> 32) | (value << 32); // swap 4-byte long pairs
    }

    /// @dev Same as {reverseBytes32} but optimized for 32-bit values.
    function reverseBytes4(bytes4 value) internal pure returns (bytes4) {
        value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8); // swap bytes
        return (value >> 16) | (value << 16); // swap 2-byte long pairs
    }

    /// @dev Same as {reverseBytes32} but optimized for 16-bit values.
    function reverseBytes2(bytes2 value) internal pure returns (bytes2) {
        return (value >> 8) | (value << 8);
    }

    /**
     * @dev Counts the number of leading zero bits a bytes array. Returns `8 * buffer.length`
     * if the buffer is all zeros.
     */
    function clz(bytes memory buffer) internal pure returns (uint256) {
        for (uint256 i = 0; i < buffer.length; i += 0x20) {
            bytes32 chunk = _unsafeReadBytesOffset(buffer, i);
            if (chunk != bytes32(0)) {
                return Math.min(8 * i + Math.clz(uint256(chunk)), 8 * buffer.length);
            }
        }
        return 8 * buffer.length;
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(add(buffer, 0x20), offset))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "prague",
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"address","name":"_initialOwner","type":"address"},{"internalType":"string","name":"_baseUri","type":"string"},{"internalType":"uint256","name":"_mintPrice","type":"uint256"},{"internalType":"uint256","name":"_maxTokensPerAddress","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721IncorrectOwner","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721InsufficientApproval","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC721InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC721InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721InvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC721InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC721InvalidSender","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721NonexistentToken","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Minted","type":"event"},{"anonymous":false,"inputs":[],"name":"MintingEnabled","type":"event"},{"anonymous":false,"inputs":[],"name":"MintingPaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"string","name":"name","type":"string"},{"indexed":true,"internalType":"address","name":"owner","type":"address"}],"name":"TokenNamed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"MAX_TOKENS_PER_ADDRESS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"enableMinting","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getName","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"quantity","type":"uint256"}],"name":"mint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"mintPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintingEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pauseMinting","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"string","name":"name","type":"string"}],"name":"setName","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"tokenNames","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60a060405234801561000f575f5ffd5b50604051613c6e380380613c6e83398181016040528101906100319190610413565b838686815f908161004291906106f7565b50806001908161005291906106f7565b5050505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036100c5575f6040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081526004016100bc91906107d5565b60405180910390fd5b6100d48161014460201b60201c565b5060016100f36100e861020760201b60201c565b61023060201b60201c565b5f0181905550826007908161010891906106f7565b5081600981905550806080818152505060016008819055505f600a5f6101000a81548160ff0219169083151502179055505050505050506107ee565b5f60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160065f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005f1b905090565b5f819050919050565b5f604051905090565b5f5ffd5b5f5ffd5b5f5ffd5b5f5ffd5b5f601f19601f8301169050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b61029882610252565b810181811067ffffffffffffffff821117156102b7576102b6610262565b5b80604052505050565b5f6102c9610239565b90506102d5828261028f565b919050565b5f67ffffffffffffffff8211156102f4576102f3610262565b5b6102fd82610252565b9050602081019050919050565b8281835e5f83830152505050565b5f61032a610325846102da565b6102c0565b9050828152602081018484840111156103465761034561024e565b5b61035184828561030a565b509392505050565b5f82601f83011261036d5761036c61024a565b5b815161037d848260208601610318565b91505092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6103af82610386565b9050919050565b6103bf816103a5565b81146103c9575f5ffd5b50565b5f815190506103da816103b6565b92915050565b5f819050919050565b6103f2816103e0565b81146103fc575f5ffd5b50565b5f8151905061040d816103e9565b92915050565b5f5f5f5f5f5f60c0878903121561042d5761042c610242565b5b5f87015167ffffffffffffffff81111561044a57610449610246565b5b61045689828a01610359565b965050602087015167ffffffffffffffff81111561047757610476610246565b5b61048389828a01610359565b955050604061049489828a016103cc565b945050606087015167ffffffffffffffff8111156104b5576104b4610246565b5b6104c189828a01610359565b93505060806104d289828a016103ff565b92505060a06104e389828a016103ff565b9150509295509295509295565b5f81519050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f600282049050600182168061053e57607f821691505b602082108103610551576105506104fa565b5b50919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f600883026105b37fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82610578565b6105bd8683610578565b95508019841693508086168417925050509392505050565b5f819050919050565b5f6105f86105f36105ee846103e0565b6105d5565b6103e0565b9050919050565b5f819050919050565b610611836105de565b61062561061d826105ff565b848454610584565b825550505050565b5f5f905090565b61063c61062d565b610647818484610608565b505050565b5b8181101561066a5761065f5f82610634565b60018101905061064d565b5050565b601f8211156106af5761068081610557565b61068984610569565b81016020851015610698578190505b6106ac6106a485610569565b83018261064c565b50505b505050565b5f82821c905092915050565b5f6106cf5f19846008026106b4565b1980831691505092915050565b5f6106e783836106c0565b9150826002028217905092915050565b610700826104f0565b67ffffffffffffffff81111561071957610718610262565b5b6107238254610527565b61072e82828561066e565b5f60209050601f83116001811461075f575f841561074d578287015190505b61075785826106dc565b8655506107be565b601f19841661076d86610557565b5f5b828110156107945784890151825560018201915060208501945060208101905061076f565b868310156107b157848901516107ad601f8916826106c0565b8355505b6001600288020188555050505b505050505050565b6107cf816103a5565b82525050565b5f6020820190506107e85f8301846107c6565b92915050565b60805161346161080d5f395f8181610a520152610daf01526134615ff3fe6080604052600436106101b6575f3560e01c8063715018a6116100eb578063c87b56dd11610089578063e797ec1b11610063578063e797ec1b146105e8578063e985e9c5146105fe578063f2fde38b1461063a578063fe55932a14610662576101b6565b8063c87b56dd1461056c578063d5abeb01146105a8578063da8fbf2a146105d2576101b6565b80639fd6db12116100c55780639fd6db12146104c2578063a0712d68146104ec578063a22cb4651461051c578063b88d4fde14610544576101b6565b8063715018a6146104585780638da5cb5b1461046e57806395d89b4114610498576101b6565b80633ccfd60b116101585780636540735811610132578063654073581461038c5780636817c76c146103b65780636b8ff574146103e057806370a082311461041c576101b6565b80633ccfd60b1461031257806342842e0e146103285780636352211e14610350576101b6565b8063095ea7b311610194578063095ea7b31461025c57806318160ddd1461028457806323b872dd146102ae578063310495ab146102d6576101b6565b806301ffc9a7146101ba57806306fdde03146101f6578063081812fc14610220575b5f5ffd5b3480156101c5575f5ffd5b506101e060048036038101906101db91906123bd565b61068a565b6040516101ed9190612402565b60405180910390f35b348015610201575f5ffd5b5061020a61069b565b604051610217919061248b565b60405180910390f35b34801561022b575f5ffd5b50610246600480360381019061024191906124de565b61072a565b6040516102539190612548565b60405180910390f35b348015610267575f5ffd5b50610282600480360381019061027d919061258b565b610745565b005b34801561028f575f5ffd5b5061029861075b565b6040516102a591906125d8565b60405180910390f35b3480156102b9575f5ffd5b506102d460048036038101906102cf91906125f1565b610770565b005b3480156102e1575f5ffd5b506102fc60048036038101906102f791906124de565b61086f565b604051610309919061248b565b60405180910390f35b34801561031d575f5ffd5b5061032661090a565b005b348015610333575f5ffd5b5061034e600480360381019061034991906125f1565b610a20565b005b34801561035b575f5ffd5b50610376600480360381019061037191906124de565b610a3f565b6040516103839190612548565b60405180910390f35b348015610397575f5ffd5b506103a0610a50565b6040516103ad91906125d8565b60405180910390f35b3480156103c1575f5ffd5b506103ca610a74565b6040516103d791906125d8565b60405180910390f35b3480156103eb575f5ffd5b50610406600480360381019061040191906124de565b610a7a565b604051610413919061248b565b60405180910390f35b348015610427575f5ffd5b50610442600480360381019061043d9190612641565b610b25565b60405161044f91906125d8565b60405180910390f35b348015610463575f5ffd5b5061046c610bdb565b005b348015610479575f5ffd5b50610482610bee565b60405161048f9190612548565b60405180910390f35b3480156104a3575f5ffd5b506104ac610c16565b6040516104b9919061248b565b60405180910390f35b3480156104cd575f5ffd5b506104d6610ca6565b6040516104e39190612402565b60405180910390f35b610506600480360381019061050191906124de565b610cb8565b60405161051391906125d8565b60405180910390f35b348015610527575f5ffd5b50610542600480360381019061053d9190612696565b610f1f565b005b34801561054f575f5ffd5b5061056a60048036038101906105659190612800565b610f35565b005b348015610577575f5ffd5b50610592600480360381019061058d91906124de565b610f5a565b60405161059f919061248b565b60405180910390f35b3480156105b3575f5ffd5b506105bc610fc0565b6040516105c991906125d8565b60405180910390f35b3480156105dd575f5ffd5b506105e6610fc9565b005b3480156105f3575f5ffd5b506105fc611018565b005b348015610609575f5ffd5b50610624600480360381019061061f9190612880565b611068565b6040516106319190612402565b60405180910390f35b348015610645575f5ffd5b50610660600480360381019061065b9190612641565b6110f6565b005b34801561066d575f5ffd5b506106886004803603810190610683919061295c565b61117a565b005b5f610694826112a7565b9050919050565b60605f80546106a9906129e3565b80601f01602080910402602001604051908101604052809291908181526020018280546106d5906129e3565b80156107205780601f106106f757610100808354040283529160200191610720565b820191905f5260205f20905b81548152906001019060200180831161070357829003601f168201915b5050505050905090565b5f61073482611388565b5061073e8261140e565b9050919050565b6107578282610752611447565b61144e565b5050565b5f600160085461076b9190612a40565b905090565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036107e0575f6040517f64a0ae920000000000000000000000000000000000000000000000000000000081526004016107d79190612548565b60405180910390fd5b5f6107f383836107ee611447565b611460565b90508373ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614610869578382826040517f64283d7b00000000000000000000000000000000000000000000000000000000815260040161086093929190612a73565b60405180910390fd5b50505050565b600b602052805f5260405f205f91509050805461088b906129e3565b80601f01602080910402602001604051908101604052809291908181526020018280546108b7906129e3565b80156109025780601f106108d957610100808354040283529160200191610902565b820191905f5260205f20905b8154815290600101906020018083116108e557829003601f168201915b505050505081565b61091261166b565b61091a6116f2565b5f4790505f8111610960576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161095790612b18565b60405180910390fd5b5f610969610bee565b90505f8173ffffffffffffffffffffffffffffffffffffffff168360405161099090612b63565b5f6040518083038185875af1925050503d805f81146109ca576040519150601f19603f3d011682016040523d82523d5f602084013e6109cf565b606091505b5050905080610a13576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a0a90612bc1565b60405180910390fd5b505050610a1e611714565b565b610a3a83838360405180602001604052805f815250610f35565b505050565b5f610a4982611388565b9050919050565b7f000000000000000000000000000000000000000000000000000000000000000081565b60095481565b6060610a8582611388565b50600b5f8381526020019081526020015f208054610aa2906129e3565b80601f0160208091040260200160405190810160405280929190818152602001828054610ace906129e3565b8015610b195780601f10610af057610100808354040283529160200191610b19565b820191905f5260205f20905b815481529060010190602001808311610afc57829003601f168201915b50505050509050919050565b5f5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610b96575f6040517f89c62b64000000000000000000000000000000000000000000000000000000008152600401610b8d9190612548565b60405180910390fd5b60035f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b610be361166b565b610bec5f61172e565b565b5f60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b606060018054610c25906129e3565b80601f0160208091040260200160405190810160405280929190818152602001828054610c51906129e3565b8015610c9c5780601f10610c7357610100808354040283529160200191610c9c565b820191905f5260205f20905b815481529060010190602001808311610c7f57829003601f168201915b5050505050905090565b600a5f9054906101000a900460ff1681565b5f610cc16116f2565b600a5f9054906101000a900460ff16610d0f576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610d0690612c29565b60405180910390fd5b5f82118015610d1f5750600a8211155b610d5e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610d5590612cb7565b60405180910390fd5b81600954610d6c9190612cd5565b3414610dad576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610da490612d86565b60405180910390fd5b7f000000000000000000000000000000000000000000000000000000000000000082610dd833610b25565b610de29190612da4565b1115610e23576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610e1a90612e47565b60405180910390fd5b612710600183600854610e369190612da4565b610e409190612a40565b1115610e81576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610e7890612eaf565b60405180910390fd5b5f60085490505f5f90505b83811015610f0d575f600854905060085f815480929190610eac90612ecd565b9190505550610ebb33826117f1565b803373ffffffffffffffffffffffffffffffffffffffff167f30385c845b448a36257a6a1716e6ad2e1bc2cbe333cde1e69fe849ad6511adfe60405160405180910390a3508080600101915050610e8c565b5080915050610f1a611714565b919050565b610f31610f2a611447565b838361180e565b5050565b610f40848484610770565b610f54610f4b611447565b85858585611977565b50505050565b6060610f6582611388565b505f610f6f611b23565b90505f815111610f8d5760405180602001604052805f815250610fb8565b80610f9784611bb3565b604051602001610fa8929190612f4e565b6040516020818303038152906040525b915050919050565b5f612710905090565b610fd161166b565b5f600a5f6101000a81548160ff0219169083151502179055507feb560756bd0f0f241c73914ffad902460a345bba8464cc80dc17a58231eed61a60405160405180910390a1565b61102061166b565b6001600a5f6101000a81548160ff0219169083151502179055507f38cb976174a5c48b8f7b2f07f69b47c271ba7f019948915dc12efb770c2a542c60405160405180910390a1565b5f60055f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16905092915050565b6110fe61166b565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361116e575f6040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081526004016111659190612548565b60405180910390fd5b6111778161172e565b50565b3373ffffffffffffffffffffffffffffffffffffffff1661119a83610a3f565b73ffffffffffffffffffffffffffffffffffffffff16146111f0576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016111e790612fe1565b60405180910390fd5b603281511115611235576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161122c9061306f565b60405180910390fd5b80600b5f8481526020019081526020015f209081611253919061322d565b503373ffffffffffffffffffffffffffffffffffffffff16827fcf22bf369e0600fa046284360f2e439f3a6199f0d11917ddfc3b5897c17064698360405161129b919061248b565b60405180910390a35050565b5f7f80ac58cd000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916148061137157507f5b5e139f000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916145b80611381575061138082611c7d565b5b9050919050565b5f5f61139383611ce6565b90505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361140557826040517f7e2732890000000000000000000000000000000000000000000000000000000081526004016113fc91906125d8565b60405180910390fd5b80915050919050565b5f60045f8381526020019081526020015f205f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050919050565b5f33905090565b61145b8383836001611d1f565b505050565b5f5f61146b84611ce6565b90505f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16146114ac576114ab818486611ede565b5b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614611537576114eb5f855f5f611d1f565b600160035f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825403925050819055505b5f73ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff16146115b657600160035f8773ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055505b8460025f8681526020019081526020015f205f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550838573ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60405160405180910390a4809150509392505050565b611673611447565b73ffffffffffffffffffffffffffffffffffffffff16611691610bee565b73ffffffffffffffffffffffffffffffffffffffff16146116f0576116b4611447565b6040517f118cdaa70000000000000000000000000000000000000000000000000000000081526004016116e79190612548565b60405180910390fd5b565b6116fa611fa1565b600261170c611707611fe2565b61200b565b5f0181905550565b6001611726611721611fe2565b61200b565b5f0181905550565b5f60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160065f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b61180a828260405180602001604052805f815250612014565b5050565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361187e57816040517f5b08ba180000000000000000000000000000000000000000000000000000000081526004016118759190612548565b60405180910390fd5b8060055f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c318360405161196a9190612402565b60405180910390a3505050565b5f8373ffffffffffffffffffffffffffffffffffffffff163b1115611b1c578273ffffffffffffffffffffffffffffffffffffffff1663150b7a02868685856040518563ffffffff1660e01b81526004016119d5949392919061334e565b6020604051808303815f875af1925050508015611a1057506040513d601f19601f82011682018060405250810190611a0d91906133ac565b60015b611a91573d805f8114611a3e576040519150601f19603f3d011682016040523d82523d5f602084013e611a43565b606091505b505f815103611a8957836040517f64a0ae92000000000000000000000000000000000000000000000000000000008152600401611a809190612548565b60405180910390fd5b805160208201fd5b63150b7a0260e01b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916817bffffffffffffffffffffffffffffffffffffffffffffffffffffffff191614611b1a57836040517f64a0ae92000000000000000000000000000000000000000000000000000000008152600401611b119190612548565b60405180910390fd5b505b5050505050565b606060078054611b32906129e3565b80601f0160208091040260200160405190810160405280929190818152602001828054611b5e906129e3565b8015611ba95780601f10611b8057610100808354040283529160200191611ba9565b820191905f5260205f20905b815481529060010190602001808311611b8c57829003601f168201915b5050505050905090565b60605f6001611bc184612037565b0190505f8167ffffffffffffffff811115611bdf57611bde6126dc565b5b6040519080825280601f01601f191660200182016040528015611c115781602001600182028036833780820191505090505b5090505f82602083010190505b600115611c72578080600190039150507f3031323334353637383961626364656600000000000000000000000000000000600a86061a8153600a8581611c6757611c666133d7565b5b0494505f8503611c1e575b819350505050919050565b5f7f01ffc9a7000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916149050919050565b5f60025f8381526020019081526020015f205f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050919050565b8080611d5757505f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b15611e89575f611d6684611388565b90505f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1614158015611dd057508273ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614155b8015611de35750611de18184611068565b155b15611e2557826040517fa9fbf51f000000000000000000000000000000000000000000000000000000008152600401611e1c9190612548565b60405180910390fd5b8115611e8757838573ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45b505b8360045f8581526020019081526020015f205f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050505050565b611ee9838383612188565b611f9c575f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611f5d57806040517f7e273289000000000000000000000000000000000000000000000000000000008152600401611f5491906125d8565b60405180910390fd5b81816040517f177e802f000000000000000000000000000000000000000000000000000000008152600401611f93929190613404565b60405180910390fd5b505050565b611fa9612248565b15611fe0576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005f1b905090565b5f819050919050565b61201e8383612264565b612032612029611447565b5f858585611977565b505050565b5f5f5f90507a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008310612093577a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008381612089576120886133d7565b5b0492506040810190505b6d04ee2d6d415b85acef810000000083106120d0576d04ee2d6d415b85acef810000000083816120c6576120c56133d7565b5b0492506020810190505b662386f26fc1000083106120ff57662386f26fc1000083816120f5576120f46133d7565b5b0492506010810190505b6305f5e1008310612128576305f5e100838161211e5761211d6133d7565b5b0492506008810190505b612710831061214d576127108381612143576121426133d7565b5b0492506004810190505b606483106121705760648381612166576121656133d7565b5b0492506002810190505b600a831061217f576001810190505b80915050919050565b5f5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff161415801561223f57508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff16148061220057506121ff8484611068565b5b8061223e57508273ffffffffffffffffffffffffffffffffffffffff166122268361140e565b73ffffffffffffffffffffffffffffffffffffffff16145b5b90509392505050565b5f600261225b612256611fe2565b61200b565b5f015414905090565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036122d4575f6040517f64a0ae920000000000000000000000000000000000000000000000000000000081526004016122cb9190612548565b60405180910390fd5b5f6122e083835f611460565b90505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614612352575f6040517f73c6ac6e0000000000000000000000000000000000000000000000000000000081526004016123499190612548565b60405180910390fd5b505050565b5f604051905090565b5f5ffd5b5f5ffd5b5f7fffffffff0000000000000000000000000000000000000000000000000000000082169050919050565b61239c81612368565b81146123a6575f5ffd5b50565b5f813590506123b781612393565b92915050565b5f602082840312156123d2576123d1612360565b5b5f6123df848285016123a9565b91505092915050565b5f8115159050919050565b6123fc816123e8565b82525050565b5f6020820190506124155f8301846123f3565b92915050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f61245d8261241b565b6124678185612425565b9350612477818560208601612435565b61248081612443565b840191505092915050565b5f6020820190508181035f8301526124a38184612453565b905092915050565b5f819050919050565b6124bd816124ab565b81146124c7575f5ffd5b50565b5f813590506124d8816124b4565b92915050565b5f602082840312156124f3576124f2612360565b5b5f612500848285016124ca565b91505092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f61253282612509565b9050919050565b61254281612528565b82525050565b5f60208201905061255b5f830184612539565b92915050565b61256a81612528565b8114612574575f5ffd5b50565b5f8135905061258581612561565b92915050565b5f5f604083850312156125a1576125a0612360565b5b5f6125ae85828601612577565b92505060206125bf858286016124ca565b9150509250929050565b6125d2816124ab565b82525050565b5f6020820190506125eb5f8301846125c9565b92915050565b5f5f5f6060848603121561260857612607612360565b5b5f61261586828701612577565b935050602061262686828701612577565b9250506040612637868287016124ca565b9150509250925092565b5f6020828403121561265657612655612360565b5b5f61266384828501612577565b91505092915050565b612675816123e8565b811461267f575f5ffd5b50565b5f813590506126908161266c565b92915050565b5f5f604083850312156126ac576126ab612360565b5b5f6126b985828601612577565b92505060206126ca85828601612682565b9150509250929050565b5f5ffd5b5f5ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b61271282612443565b810181811067ffffffffffffffff82111715612731576127306126dc565b5b80604052505050565b5f612743612357565b905061274f8282612709565b919050565b5f67ffffffffffffffff82111561276e5761276d6126dc565b5b61277782612443565b9050602081019050919050565b828183375f83830152505050565b5f6127a461279f84612754565b61273a565b9050828152602081018484840111156127c0576127bf6126d8565b5b6127cb848285612784565b509392505050565b5f82601f8301126127e7576127e66126d4565b5b81356127f7848260208601612792565b91505092915050565b5f5f5f5f6080858703121561281857612817612360565b5b5f61282587828801612577565b945050602061283687828801612577565b9350506040612847878288016124ca565b925050606085013567ffffffffffffffff81111561286857612867612364565b5b612874878288016127d3565b91505092959194509250565b5f5f6040838503121561289657612895612360565b5b5f6128a385828601612577565b92505060206128b485828601612577565b9150509250929050565b5f67ffffffffffffffff8211156128d8576128d76126dc565b5b6128e182612443565b9050602081019050919050565b5f6129006128fb846128be565b61273a565b90508281526020810184848401111561291c5761291b6126d8565b5b612927848285612784565b509392505050565b5f82601f830112612943576129426126d4565b5b81356129538482602086016128ee565b91505092915050565b5f5f6040838503121561297257612971612360565b5b5f61297f858286016124ca565b925050602083013567ffffffffffffffff8111156129a05761299f612364565b5b6129ac8582860161292f565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806129fa57607f821691505b602082108103612a0d57612a0c6129b6565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f612a4a826124ab565b9150612a55836124ab565b9250828203905081811115612a6d57612a6c612a13565b5b92915050565b5f606082019050612a865f830186612539565b612a9360208301856125c9565b612aa06040830184612539565b949350505050565b7f436c6f616b6965734e46543a204e6f2066756e647320746f20776974686472615f8201527f7700000000000000000000000000000000000000000000000000000000000000602082015250565b5f612b02602183612425565b9150612b0d82612aa8565b604082019050919050565b5f6020820190508181035f830152612b2f81612af6565b9050919050565b5f81905092915050565b50565b5f612b4e5f83612b36565b9150612b5982612b40565b5f82019050919050565b5f612b6d82612b43565b9150819050919050565b7f436c6f616b6965734e46543a205769746864726177616c206661696c656400005f82015250565b5f612bab601e83612425565b9150612bb682612b77565b602082019050919050565b5f6020820190508181035f830152612bd881612b9f565b9050919050565b7f436c6f616b6965734e46543a204d696e74696e672069732064697361626c65645f82015250565b5f612c13602083612425565b9150612c1e82612bdf565b602082019050919050565b5f6020820190508181035f830152612c4081612c07565b9050919050565b7f436c6f616b6965734e46543a205175616e74697479206d7573742062652062655f8201527f747765656e203120616e64203130000000000000000000000000000000000000602082015250565b5f612ca1602e83612425565b9150612cac82612c47565b604082019050919050565b5f6020820190508181035f830152612cce81612c95565b9050919050565b5f612cdf826124ab565b9150612cea836124ab565b9250828202612cf8816124ab565b91508282048414831517612d0f57612d0e612a13565b5b5092915050565b7f436c6f616b6965734e46543a204d7573742073656e64206578616374206d696e5f8201527f7420707269636520666f72207175616e74697479000000000000000000000000602082015250565b5f612d70603483612425565b9150612d7b82612d16565b604082019050919050565b5f6020820190508181035f830152612d9d81612d64565b9050919050565b5f612dae826124ab565b9150612db9836124ab565b9250828201905080821115612dd157612dd0612a13565b5b92915050565b7f436c6f616b6965734e46543a20576f756c6420657863656564206d617820746f5f8201527f6b656e7320706572206164647265737300000000000000000000000000000000602082015250565b5f612e31603083612425565b9150612e3c82612dd7565b604082019050919050565b5f6020820190508181035f830152612e5e81612e25565b9050919050565b7f436c6f616b6965734e46543a204d617820737570706c792072656163686564005f82015250565b5f612e99601f83612425565b9150612ea482612e65565b602082019050919050565b5f6020820190508181035f830152612ec681612e8d565b9050919050565b5f612ed7826124ab565b91507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8203612f0957612f08612a13565b5b600182019050919050565b5f81905092915050565b5f612f288261241b565b612f328185612f14565b9350612f42818560208601612435565b80840191505092915050565b5f612f598285612f1e565b9150612f658284612f1e565b91508190509392505050565b7f436c6f616b6965734e46543a204f6e6c7920746f6b656e206f776e65722063615f8201527f6e20736574206e616d6500000000000000000000000000000000000000000000602082015250565b5f612fcb602a83612425565b9150612fd682612f71565b604082019050919050565b5f6020820190508181035f830152612ff881612fbf565b9050919050565b7f436c6f616b6965734e46543a204e616d652065786365656473206d6178696d755f8201527f6d206c656e677468000000000000000000000000000000000000000000000000602082015250565b5f613059602883612425565b915061306482612fff565b604082019050919050565b5f6020820190508181035f8301526130868161304d565b9050919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f600883026130e97fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff826130ae565b6130f386836130ae565b95508019841693508086168417925050509392505050565b5f819050919050565b5f61312e613129613124846124ab565b61310b565b6124ab565b9050919050565b5f819050919050565b61314783613114565b61315b61315382613135565b8484546130ba565b825550505050565b5f5f905090565b613172613163565b61317d81848461313e565b505050565b5b818110156131a0576131955f8261316a565b600181019050613183565b5050565b601f8211156131e5576131b68161308d565b6131bf8461309f565b810160208510156131ce578190505b6131e26131da8561309f565b830182613182565b50505b505050565b5f82821c905092915050565b5f6132055f19846008026131ea565b1980831691505092915050565b5f61321d83836131f6565b9150826002028217905092915050565b6132368261241b565b67ffffffffffffffff81111561324f5761324e6126dc565b5b61325982546129e3565b6132648282856131a4565b5f60209050601f831160018114613295575f8415613283578287015190505b61328d8582613212565b8655506132f4565b601f1984166132a38661308d565b5f5b828110156132ca578489015182556001820191506020850194506020810190506132a5565b868310156132e757848901516132e3601f8916826131f6565b8355505b6001600288020188555050505b505050505050565b5f81519050919050565b5f82825260208201905092915050565b5f613320826132fc565b61332a8185613306565b935061333a818560208601612435565b61334381612443565b840191505092915050565b5f6080820190506133615f830187612539565b61336e6020830186612539565b61337b60408301856125c9565b818103606083015261338d8184613316565b905095945050505050565b5f815190506133a681612393565b92915050565b5f602082840312156133c1576133c0612360565b5b5f6133ce84828501613398565b91505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f6040820190506134175f830185612539565b61342460208301846125c9565b939250505056fea264697066735822122092f9f3d82b0fc431cb25620403e605668f1e480f6928463e5b3884948c8429f664736f6c634300081e003300000000000000000000000000000000000000000000000000000000000000c0000000000000000000000000000000000000000000000000000000000000010000000000000000000000000095e774787a63f145f7b05028a1479bdc9d055f3d000000000000000000000000000000000000000000000000000000000000014000000000000000000000000000000000000000000000000000038d7ea4c68000000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000008436c6f616b6965730000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007434c4f414b4945000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000043697066733a2f2f62616679626569656b6475746b32666679377a747662626d7535366e72377732796c72747678777a7575336161786b6e653567356f73626b6d6a652f0000000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x6080604052600436106101b6575f3560e01c8063715018a6116100eb578063c87b56dd11610089578063e797ec1b11610063578063e797ec1b146105e8578063e985e9c5146105fe578063f2fde38b1461063a578063fe55932a14610662576101b6565b8063c87b56dd1461056c578063d5abeb01146105a8578063da8fbf2a146105d2576101b6565b80639fd6db12116100c55780639fd6db12146104c2578063a0712d68146104ec578063a22cb4651461051c578063b88d4fde14610544576101b6565b8063715018a6146104585780638da5cb5b1461046e57806395d89b4114610498576101b6565b80633ccfd60b116101585780636540735811610132578063654073581461038c5780636817c76c146103b65780636b8ff574146103e057806370a082311461041c576101b6565b80633ccfd60b1461031257806342842e0e146103285780636352211e14610350576101b6565b8063095ea7b311610194578063095ea7b31461025c57806318160ddd1461028457806323b872dd146102ae578063310495ab146102d6576101b6565b806301ffc9a7146101ba57806306fdde03146101f6578063081812fc14610220575b5f5ffd5b3480156101c5575f5ffd5b506101e060048036038101906101db91906123bd565b61068a565b6040516101ed9190612402565b60405180910390f35b348015610201575f5ffd5b5061020a61069b565b604051610217919061248b565b60405180910390f35b34801561022b575f5ffd5b50610246600480360381019061024191906124de565b61072a565b6040516102539190612548565b60405180910390f35b348015610267575f5ffd5b50610282600480360381019061027d919061258b565b610745565b005b34801561028f575f5ffd5b5061029861075b565b6040516102a591906125d8565b60405180910390f35b3480156102b9575f5ffd5b506102d460048036038101906102cf91906125f1565b610770565b005b3480156102e1575f5ffd5b506102fc60048036038101906102f791906124de565b61086f565b604051610309919061248b565b60405180910390f35b34801561031d575f5ffd5b5061032661090a565b005b348015610333575f5ffd5b5061034e600480360381019061034991906125f1565b610a20565b005b34801561035b575f5ffd5b50610376600480360381019061037191906124de565b610a3f565b6040516103839190612548565b60405180910390f35b348015610397575f5ffd5b506103a0610a50565b6040516103ad91906125d8565b60405180910390f35b3480156103c1575f5ffd5b506103ca610a74565b6040516103d791906125d8565b60405180910390f35b3480156103eb575f5ffd5b50610406600480360381019061040191906124de565b610a7a565b604051610413919061248b565b60405180910390f35b348015610427575f5ffd5b50610442600480360381019061043d9190612641565b610b25565b60405161044f91906125d8565b60405180910390f35b348015610463575f5ffd5b5061046c610bdb565b005b348015610479575f5ffd5b50610482610bee565b60405161048f9190612548565b60405180910390f35b3480156104a3575f5ffd5b506104ac610c16565b6040516104b9919061248b565b60405180910390f35b3480156104cd575f5ffd5b506104d6610ca6565b6040516104e39190612402565b60405180910390f35b610506600480360381019061050191906124de565b610cb8565b60405161051391906125d8565b60405180910390f35b348015610527575f5ffd5b50610542600480360381019061053d9190612696565b610f1f565b005b34801561054f575f5ffd5b5061056a60048036038101906105659190612800565b610f35565b005b348015610577575f5ffd5b50610592600480360381019061058d91906124de565b610f5a565b60405161059f919061248b565b60405180910390f35b3480156105b3575f5ffd5b506105bc610fc0565b6040516105c991906125d8565b60405180910390f35b3480156105dd575f5ffd5b506105e6610fc9565b005b3480156105f3575f5ffd5b506105fc611018565b005b348015610609575f5ffd5b50610624600480360381019061061f9190612880565b611068565b6040516106319190612402565b60405180910390f35b348015610645575f5ffd5b50610660600480360381019061065b9190612641565b6110f6565b005b34801561066d575f5ffd5b506106886004803603810190610683919061295c565b61117a565b005b5f610694826112a7565b9050919050565b60605f80546106a9906129e3565b80601f01602080910402602001604051908101604052809291908181526020018280546106d5906129e3565b80156107205780601f106106f757610100808354040283529160200191610720565b820191905f5260205f20905b81548152906001019060200180831161070357829003601f168201915b5050505050905090565b5f61073482611388565b5061073e8261140e565b9050919050565b6107578282610752611447565b61144e565b5050565b5f600160085461076b9190612a40565b905090565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036107e0575f6040517f64a0ae920000000000000000000000000000000000000000000000000000000081526004016107d79190612548565b60405180910390fd5b5f6107f383836107ee611447565b611460565b90508373ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614610869578382826040517f64283d7b00000000000000000000000000000000000000000000000000000000815260040161086093929190612a73565b60405180910390fd5b50505050565b600b602052805f5260405f205f91509050805461088b906129e3565b80601f01602080910402602001604051908101604052809291908181526020018280546108b7906129e3565b80156109025780601f106108d957610100808354040283529160200191610902565b820191905f5260205f20905b8154815290600101906020018083116108e557829003601f168201915b505050505081565b61091261166b565b61091a6116f2565b5f4790505f8111610960576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161095790612b18565b60405180910390fd5b5f610969610bee565b90505f8173ffffffffffffffffffffffffffffffffffffffff168360405161099090612b63565b5f6040518083038185875af1925050503d805f81146109ca576040519150601f19603f3d011682016040523d82523d5f602084013e6109cf565b606091505b5050905080610a13576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a0a90612bc1565b60405180910390fd5b505050610a1e611714565b565b610a3a83838360405180602001604052805f815250610f35565b505050565b5f610a4982611388565b9050919050565b7f000000000000000000000000000000000000000000000000000000000000000a81565b60095481565b6060610a8582611388565b50600b5f8381526020019081526020015f208054610aa2906129e3565b80601f0160208091040260200160405190810160405280929190818152602001828054610ace906129e3565b8015610b195780601f10610af057610100808354040283529160200191610b19565b820191905f5260205f20905b815481529060010190602001808311610afc57829003601f168201915b50505050509050919050565b5f5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610b96575f6040517f89c62b64000000000000000000000000000000000000000000000000000000008152600401610b8d9190612548565b60405180910390fd5b60035f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b610be361166b565b610bec5f61172e565b565b5f60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b606060018054610c25906129e3565b80601f0160208091040260200160405190810160405280929190818152602001828054610c51906129e3565b8015610c9c5780601f10610c7357610100808354040283529160200191610c9c565b820191905f5260205f20905b815481529060010190602001808311610c7f57829003601f168201915b5050505050905090565b600a5f9054906101000a900460ff1681565b5f610cc16116f2565b600a5f9054906101000a900460ff16610d0f576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610d0690612c29565b60405180910390fd5b5f82118015610d1f5750600a8211155b610d5e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610d5590612cb7565b60405180910390fd5b81600954610d6c9190612cd5565b3414610dad576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610da490612d86565b60405180910390fd5b7f000000000000000000000000000000000000000000000000000000000000000a82610dd833610b25565b610de29190612da4565b1115610e23576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610e1a90612e47565b60405180910390fd5b612710600183600854610e369190612da4565b610e409190612a40565b1115610e81576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610e7890612eaf565b60405180910390fd5b5f60085490505f5f90505b83811015610f0d575f600854905060085f815480929190610eac90612ecd565b9190505550610ebb33826117f1565b803373ffffffffffffffffffffffffffffffffffffffff167f30385c845b448a36257a6a1716e6ad2e1bc2cbe333cde1e69fe849ad6511adfe60405160405180910390a3508080600101915050610e8c565b5080915050610f1a611714565b919050565b610f31610f2a611447565b838361180e565b5050565b610f40848484610770565b610f54610f4b611447565b85858585611977565b50505050565b6060610f6582611388565b505f610f6f611b23565b90505f815111610f8d5760405180602001604052805f815250610fb8565b80610f9784611bb3565b604051602001610fa8929190612f4e565b6040516020818303038152906040525b915050919050565b5f612710905090565b610fd161166b565b5f600a5f6101000a81548160ff0219169083151502179055507feb560756bd0f0f241c73914ffad902460a345bba8464cc80dc17a58231eed61a60405160405180910390a1565b61102061166b565b6001600a5f6101000a81548160ff0219169083151502179055507f38cb976174a5c48b8f7b2f07f69b47c271ba7f019948915dc12efb770c2a542c60405160405180910390a1565b5f60055f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16905092915050565b6110fe61166b565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361116e575f6040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081526004016111659190612548565b60405180910390fd5b6111778161172e565b50565b3373ffffffffffffffffffffffffffffffffffffffff1661119a83610a3f565b73ffffffffffffffffffffffffffffffffffffffff16146111f0576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016111e790612fe1565b60405180910390fd5b603281511115611235576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161122c9061306f565b60405180910390fd5b80600b5f8481526020019081526020015f209081611253919061322d565b503373ffffffffffffffffffffffffffffffffffffffff16827fcf22bf369e0600fa046284360f2e439f3a6199f0d11917ddfc3b5897c17064698360405161129b919061248b565b60405180910390a35050565b5f7f80ac58cd000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916148061137157507f5b5e139f000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916145b80611381575061138082611c7d565b5b9050919050565b5f5f61139383611ce6565b90505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361140557826040517f7e2732890000000000000000000000000000000000000000000000000000000081526004016113fc91906125d8565b60405180910390fd5b80915050919050565b5f60045f8381526020019081526020015f205f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050919050565b5f33905090565b61145b8383836001611d1f565b505050565b5f5f61146b84611ce6565b90505f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16146114ac576114ab818486611ede565b5b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614611537576114eb5f855f5f611d1f565b600160035f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825403925050819055505b5f73ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff16146115b657600160035f8773ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055505b8460025f8681526020019081526020015f205f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550838573ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60405160405180910390a4809150509392505050565b611673611447565b73ffffffffffffffffffffffffffffffffffffffff16611691610bee565b73ffffffffffffffffffffffffffffffffffffffff16146116f0576116b4611447565b6040517f118cdaa70000000000000000000000000000000000000000000000000000000081526004016116e79190612548565b60405180910390fd5b565b6116fa611fa1565b600261170c611707611fe2565b61200b565b5f0181905550565b6001611726611721611fe2565b61200b565b5f0181905550565b5f60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160065f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b61180a828260405180602001604052805f815250612014565b5050565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361187e57816040517f5b08ba180000000000000000000000000000000000000000000000000000000081526004016118759190612548565b60405180910390fd5b8060055f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c318360405161196a9190612402565b60405180910390a3505050565b5f8373ffffffffffffffffffffffffffffffffffffffff163b1115611b1c578273ffffffffffffffffffffffffffffffffffffffff1663150b7a02868685856040518563ffffffff1660e01b81526004016119d5949392919061334e565b6020604051808303815f875af1925050508015611a1057506040513d601f19601f82011682018060405250810190611a0d91906133ac565b60015b611a91573d805f8114611a3e576040519150601f19603f3d011682016040523d82523d5f602084013e611a43565b606091505b505f815103611a8957836040517f64a0ae92000000000000000000000000000000000000000000000000000000008152600401611a809190612548565b60405180910390fd5b805160208201fd5b63150b7a0260e01b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916817bffffffffffffffffffffffffffffffffffffffffffffffffffffffff191614611b1a57836040517f64a0ae92000000000000000000000000000000000000000000000000000000008152600401611b119190612548565b60405180910390fd5b505b5050505050565b606060078054611b32906129e3565b80601f0160208091040260200160405190810160405280929190818152602001828054611b5e906129e3565b8015611ba95780601f10611b8057610100808354040283529160200191611ba9565b820191905f5260205f20905b815481529060010190602001808311611b8c57829003601f168201915b5050505050905090565b60605f6001611bc184612037565b0190505f8167ffffffffffffffff811115611bdf57611bde6126dc565b5b6040519080825280601f01601f191660200182016040528015611c115781602001600182028036833780820191505090505b5090505f82602083010190505b600115611c72578080600190039150507f3031323334353637383961626364656600000000000000000000000000000000600a86061a8153600a8581611c6757611c666133d7565b5b0494505f8503611c1e575b819350505050919050565b5f7f01ffc9a7000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916149050919050565b5f60025f8381526020019081526020015f205f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050919050565b8080611d5757505f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b15611e89575f611d6684611388565b90505f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1614158015611dd057508273ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614155b8015611de35750611de18184611068565b155b15611e2557826040517fa9fbf51f000000000000000000000000000000000000000000000000000000008152600401611e1c9190612548565b60405180910390fd5b8115611e8757838573ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45b505b8360045f8581526020019081526020015f205f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050505050565b611ee9838383612188565b611f9c575f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611f5d57806040517f7e273289000000000000000000000000000000000000000000000000000000008152600401611f5491906125d8565b60405180910390fd5b81816040517f177e802f000000000000000000000000000000000000000000000000000000008152600401611f93929190613404565b60405180910390fd5b505050565b611fa9612248565b15611fe0576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005f1b905090565b5f819050919050565b61201e8383612264565b612032612029611447565b5f858585611977565b505050565b5f5f5f90507a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008310612093577a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008381612089576120886133d7565b5b0492506040810190505b6d04ee2d6d415b85acef810000000083106120d0576d04ee2d6d415b85acef810000000083816120c6576120c56133d7565b5b0492506020810190505b662386f26fc1000083106120ff57662386f26fc1000083816120f5576120f46133d7565b5b0492506010810190505b6305f5e1008310612128576305f5e100838161211e5761211d6133d7565b5b0492506008810190505b612710831061214d576127108381612143576121426133d7565b5b0492506004810190505b606483106121705760648381612166576121656133d7565b5b0492506002810190505b600a831061217f576001810190505b80915050919050565b5f5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff161415801561223f57508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff16148061220057506121ff8484611068565b5b8061223e57508273ffffffffffffffffffffffffffffffffffffffff166122268361140e565b73ffffffffffffffffffffffffffffffffffffffff16145b5b90509392505050565b5f600261225b612256611fe2565b61200b565b5f015414905090565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036122d4575f6040517f64a0ae920000000000000000000000000000000000000000000000000000000081526004016122cb9190612548565b60405180910390fd5b5f6122e083835f611460565b90505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614612352575f6040517f73c6ac6e0000000000000000000000000000000000000000000000000000000081526004016123499190612548565b60405180910390fd5b505050565b5f604051905090565b5f5ffd5b5f5ffd5b5f7fffffffff0000000000000000000000000000000000000000000000000000000082169050919050565b61239c81612368565b81146123a6575f5ffd5b50565b5f813590506123b781612393565b92915050565b5f602082840312156123d2576123d1612360565b5b5f6123df848285016123a9565b91505092915050565b5f8115159050919050565b6123fc816123e8565b82525050565b5f6020820190506124155f8301846123f3565b92915050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f61245d8261241b565b6124678185612425565b9350612477818560208601612435565b61248081612443565b840191505092915050565b5f6020820190508181035f8301526124a38184612453565b905092915050565b5f819050919050565b6124bd816124ab565b81146124c7575f5ffd5b50565b5f813590506124d8816124b4565b92915050565b5f602082840312156124f3576124f2612360565b5b5f612500848285016124ca565b91505092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f61253282612509565b9050919050565b61254281612528565b82525050565b5f60208201905061255b5f830184612539565b92915050565b61256a81612528565b8114612574575f5ffd5b50565b5f8135905061258581612561565b92915050565b5f5f604083850312156125a1576125a0612360565b5b5f6125ae85828601612577565b92505060206125bf858286016124ca565b9150509250929050565b6125d2816124ab565b82525050565b5f6020820190506125eb5f8301846125c9565b92915050565b5f5f5f6060848603121561260857612607612360565b5b5f61261586828701612577565b935050602061262686828701612577565b9250506040612637868287016124ca565b9150509250925092565b5f6020828403121561265657612655612360565b5b5f61266384828501612577565b91505092915050565b612675816123e8565b811461267f575f5ffd5b50565b5f813590506126908161266c565b92915050565b5f5f604083850312156126ac576126ab612360565b5b5f6126b985828601612577565b92505060206126ca85828601612682565b9150509250929050565b5f5ffd5b5f5ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b61271282612443565b810181811067ffffffffffffffff82111715612731576127306126dc565b5b80604052505050565b5f612743612357565b905061274f8282612709565b919050565b5f67ffffffffffffffff82111561276e5761276d6126dc565b5b61277782612443565b9050602081019050919050565b828183375f83830152505050565b5f6127a461279f84612754565b61273a565b9050828152602081018484840111156127c0576127bf6126d8565b5b6127cb848285612784565b509392505050565b5f82601f8301126127e7576127e66126d4565b5b81356127f7848260208601612792565b91505092915050565b5f5f5f5f6080858703121561281857612817612360565b5b5f61282587828801612577565b945050602061283687828801612577565b9350506040612847878288016124ca565b925050606085013567ffffffffffffffff81111561286857612867612364565b5b612874878288016127d3565b91505092959194509250565b5f5f6040838503121561289657612895612360565b5b5f6128a385828601612577565b92505060206128b485828601612577565b9150509250929050565b5f67ffffffffffffffff8211156128d8576128d76126dc565b5b6128e182612443565b9050602081019050919050565b5f6129006128fb846128be565b61273a565b90508281526020810184848401111561291c5761291b6126d8565b5b612927848285612784565b509392505050565b5f82601f830112612943576129426126d4565b5b81356129538482602086016128ee565b91505092915050565b5f5f6040838503121561297257612971612360565b5b5f61297f858286016124ca565b925050602083013567ffffffffffffffff8111156129a05761299f612364565b5b6129ac8582860161292f565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806129fa57607f821691505b602082108103612a0d57612a0c6129b6565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f612a4a826124ab565b9150612a55836124ab565b9250828203905081811115612a6d57612a6c612a13565b5b92915050565b5f606082019050612a865f830186612539565b612a9360208301856125c9565b612aa06040830184612539565b949350505050565b7f436c6f616b6965734e46543a204e6f2066756e647320746f20776974686472615f8201527f7700000000000000000000000000000000000000000000000000000000000000602082015250565b5f612b02602183612425565b9150612b0d82612aa8565b604082019050919050565b5f6020820190508181035f830152612b2f81612af6565b9050919050565b5f81905092915050565b50565b5f612b4e5f83612b36565b9150612b5982612b40565b5f82019050919050565b5f612b6d82612b43565b9150819050919050565b7f436c6f616b6965734e46543a205769746864726177616c206661696c656400005f82015250565b5f612bab601e83612425565b9150612bb682612b77565b602082019050919050565b5f6020820190508181035f830152612bd881612b9f565b9050919050565b7f436c6f616b6965734e46543a204d696e74696e672069732064697361626c65645f82015250565b5f612c13602083612425565b9150612c1e82612bdf565b602082019050919050565b5f6020820190508181035f830152612c4081612c07565b9050919050565b7f436c6f616b6965734e46543a205175616e74697479206d7573742062652062655f8201527f747765656e203120616e64203130000000000000000000000000000000000000602082015250565b5f612ca1602e83612425565b9150612cac82612c47565b604082019050919050565b5f6020820190508181035f830152612cce81612c95565b9050919050565b5f612cdf826124ab565b9150612cea836124ab565b9250828202612cf8816124ab565b91508282048414831517612d0f57612d0e612a13565b5b5092915050565b7f436c6f616b6965734e46543a204d7573742073656e64206578616374206d696e5f8201527f7420707269636520666f72207175616e74697479000000000000000000000000602082015250565b5f612d70603483612425565b9150612d7b82612d16565b604082019050919050565b5f6020820190508181035f830152612d9d81612d64565b9050919050565b5f612dae826124ab565b9150612db9836124ab565b9250828201905080821115612dd157612dd0612a13565b5b92915050565b7f436c6f616b6965734e46543a20576f756c6420657863656564206d617820746f5f8201527f6b656e7320706572206164647265737300000000000000000000000000000000602082015250565b5f612e31603083612425565b9150612e3c82612dd7565b604082019050919050565b5f6020820190508181035f830152612e5e81612e25565b9050919050565b7f436c6f616b6965734e46543a204d617820737570706c792072656163686564005f82015250565b5f612e99601f83612425565b9150612ea482612e65565b602082019050919050565b5f6020820190508181035f830152612ec681612e8d565b9050919050565b5f612ed7826124ab565b91507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8203612f0957612f08612a13565b5b600182019050919050565b5f81905092915050565b5f612f288261241b565b612f328185612f14565b9350612f42818560208601612435565b80840191505092915050565b5f612f598285612f1e565b9150612f658284612f1e565b91508190509392505050565b7f436c6f616b6965734e46543a204f6e6c7920746f6b656e206f776e65722063615f8201527f6e20736574206e616d6500000000000000000000000000000000000000000000602082015250565b5f612fcb602a83612425565b9150612fd682612f71565b604082019050919050565b5f6020820190508181035f830152612ff881612fbf565b9050919050565b7f436c6f616b6965734e46543a204e616d652065786365656473206d6178696d755f8201527f6d206c656e677468000000000000000000000000000000000000000000000000602082015250565b5f613059602883612425565b915061306482612fff565b604082019050919050565b5f6020820190508181035f8301526130868161304d565b9050919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f600883026130e97fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff826130ae565b6130f386836130ae565b95508019841693508086168417925050509392505050565b5f819050919050565b5f61312e613129613124846124ab565b61310b565b6124ab565b9050919050565b5f819050919050565b61314783613114565b61315b61315382613135565b8484546130ba565b825550505050565b5f5f905090565b613172613163565b61317d81848461313e565b505050565b5b818110156131a0576131955f8261316a565b600181019050613183565b5050565b601f8211156131e5576131b68161308d565b6131bf8461309f565b810160208510156131ce578190505b6131e26131da8561309f565b830182613182565b50505b505050565b5f82821c905092915050565b5f6132055f19846008026131ea565b1980831691505092915050565b5f61321d83836131f6565b9150826002028217905092915050565b6132368261241b565b67ffffffffffffffff81111561324f5761324e6126dc565b5b61325982546129e3565b6132648282856131a4565b5f60209050601f831160018114613295575f8415613283578287015190505b61328d8582613212565b8655506132f4565b601f1984166132a38661308d565b5f5b828110156132ca578489015182556001820191506020850194506020810190506132a5565b868310156132e757848901516132e3601f8916826131f6565b8355505b6001600288020188555050505b505050505050565b5f81519050919050565b5f82825260208201905092915050565b5f613320826132fc565b61332a8185613306565b935061333a818560208601612435565b61334381612443565b840191505092915050565b5f6080820190506133615f830187612539565b61336e6020830186612539565b61337b60408301856125c9565b818103606083015261338d8184613316565b905095945050505050565b5f815190506133a681612393565b92915050565b5f602082840312156133c1576133c0612360565b5b5f6133ce84828501613398565b91505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f6040820190506134175f830185612539565b61342460208301846125c9565b939250505056fea264697066735822122092f9f3d82b0fc431cb25620403e605668f1e480f6928463e5b3884948c8429f664736f6c634300081e0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000000000000000000000000000000000000000000c0000000000000000000000000000000000000000000000000000000000000010000000000000000000000000095e774787a63f145f7b05028a1479bdc9d055f3d000000000000000000000000000000000000000000000000000000000000014000000000000000000000000000000000000000000000000000038d7ea4c68000000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000008436c6f616b6965730000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007434c4f414b4945000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000043697066733a2f2f62616679626569656b6475746b32666679377a747662626d7535366e72377732796c72747678777a7575336161786b6e653567356f73626b6d6a652f0000000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : _name (string): Cloakies
Arg [1] : _symbol (string): CLOAKIE
Arg [2] : _initialOwner (address): 0x95E774787A63f145f7B05028a1479bDc9D055f3d
Arg [3] : _baseUri (string): ipfs://bafybeiekdutk2ffy7ztvbbmu56nr7w2ylrtvxwzuu3aaxkne5g5osbkmje/
Arg [4] : _mintPrice (uint256): 1000000000000000
Arg [5] : _maxTokensPerAddress (uint256): 10

-----Encoded View---------------
14 Constructor Arguments found :
Arg [0] : 00000000000000000000000000000000000000000000000000000000000000c0
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000100
Arg [2] : 00000000000000000000000095e774787a63f145f7b05028a1479bdc9d055f3d
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000140
Arg [4] : 00000000000000000000000000000000000000000000000000038d7ea4c68000
Arg [5] : 000000000000000000000000000000000000000000000000000000000000000a
Arg [6] : 0000000000000000000000000000000000000000000000000000000000000008
Arg [7] : 436c6f616b696573000000000000000000000000000000000000000000000000
Arg [8] : 0000000000000000000000000000000000000000000000000000000000000007
Arg [9] : 434c4f414b494500000000000000000000000000000000000000000000000000
Arg [10] : 0000000000000000000000000000000000000000000000000000000000000043
Arg [11] : 697066733a2f2f62616679626569656b6475746b32666679377a747662626d75
Arg [12] : 35366e72377732796c72747678777a7575336161786b6e653567356f73626b6d
Arg [13] : 6a652f0000000000000000000000000000000000000000000000000000000000


Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.