ETH Price: $3,375.46 (+2.05%)
 

Overview

Max Total Supply

1,134,394 JUNK

Holders

34

Transfers

-
0

Market

Price

$0.00 @ 0.000000 ETH

Onchain Market Cap

-

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information

Contract Source Code Verified (Exact Match)

Contract Name:
JUNKToken

Compiler Version
v0.8.27+commit.40a35a09

Optimization Enabled:
No with 200 runs

Other Settings:
default evmVersion
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.27;

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {ERC20Pausable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Pausable.sol";
import {ERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import {
    Ownable2Step,
    Ownable
} from "@openzeppelin/contracts/access/Ownable2Step.sol";

/**
 * @title IJUNKRegistry
 * @notice Interface that all registry contracts must implement
 * @dev Registry contracts control minting and burning operations
 */
interface IJUNKRegistry {
    function isValidRegistry() external view returns (bool);
    function version() external view returns (uint256);
    function maxMintPerOperation() external view returns (uint256);
    function hasRateLimits() external view returns (bool);
    function isPaused() external view returns (bool);
}

/**
 * @title JUNK Token - Production Secure Version
 * @notice ERC20 token with registry-controlled minting and enhanced security
 * @dev All critical operations are protected by timelock, multi-sig ready, and comprehensive validation
 * @author @chrisdbuilder.eth
 *
 * SECURITY FEATURES:
 * - Registry changes require 7-day timelock with full re-validation
 * - Guardian can emergency cancel registry changes
 * - Registry must implement IJUNKRegistry interface
 * - Mint operations validate registry limits
 * - Separate privileged burn function with clear access control
 * - Time-limited pause functionality (max 30 days)
 * - Two-step ownership transfer via Ownable2Step
 * - Comprehensive event logging for all critical operations
 *
 * ARCHITECTURE:
 * - Owner (should be multi-sig): Controls registry changes, pause, guardian
 * - Guardian (should be multi-sig): Can emergency cancel registry changes
 * - Registry: Controls minting and privileged burning operations
 * - Users: Can burn their own tokens, transfer normally
 */
contract JUNKToken is
    ERC20,
    ERC20Burnable,
    ERC20Pausable,
    ERC20Permit,
    Ownable2Step
{
    // ============ Constants ============

    uint256 public constant MAX_SUPPLY = 1_000_000_000 * 10 ** 18;
    uint256 public constant MAX_INITIAL_ALLOCATION = MAX_SUPPLY / 2;

    /// @notice Timelock duration for registry changes (7 days for community response)
    uint256 public constant REGISTRY_CHANGE_DELAY = 7 days;

    /// @notice Grace period for initial setup (1 hour after deployment)
    bool internal INITIAL_REGISTRY_SET = false;

    /// @notice Maximum pause duration (30 days to prevent indefinite lock)
    uint256 public constant MAX_PAUSE_DURATION = 30 days;

    // ============ State Variables ============

    /// @notice Currently active registry contract
    address public registry;

    /// @notice Guardian address that can cancel registry changes
    address public guardian;

    /// @notice Pending registry awaiting timelock
    address public pendingRegistry;

    /// @notice Timestamp when pending registry can be finalized
    uint256 public registryChangeTime;

    /// @notice Contract deployment timestamp
    uint256 public immutable deploymentTime;

    /// @notice Timestamp when pause was activated
    uint256 public pausedAt;

    // ============ Custom Errors ============

    error ExceedsMaxSupply();
    error ExceedsInitialAllocation();
    error InvalidAddress();
    error OnlyRegistry();
    error OnlyGuardian();
    error RegistryAlreadySet();
    error NotAContract();
    error InvalidRegistry();
    error RegistryValidationFailed();
    error InvalidVersion();
    error TimelockActive();
    error NoPendingChange();
    error RegistryDestroyed();
    error RegistryNoLongerValid();
    error ExceedsRegistryLimit();
    error CannotVerifyLimit();
    error SetupPeriodExpired();
    error PauseDurationExceeded();
    error MaxMintOperationFailed();
    error HasRateLimitsFailed();
    error IsPausedCheckFailed();
    error RegistryReportsPaused();

    // ============ Events ============

    event RegistryUpdated(
        address indexed oldRegistry,
        address indexed newRegistry,
        uint256 timestamp
    );

    event RegistryChangeInitiated(
        address indexed newRegistry,
        uint256 effectiveTime,
        uint256 initiatedAt
    );

    event RegistryChangeCancelled(
        address indexed cancelledRegistry,
        address indexed cancelledBy,
        uint256 timestamp
    );

    event GuardianUpdated(
        address indexed oldGuardian,
        address indexed newGuardian
    );

    event RegistryMinted(
        address indexed registry,
        address indexed to,
        uint256 amount,
        uint256 newTotalSupply
    );

    event RegistryBurned(
        address indexed registry,
        address indexed from,
        uint256 amount,
        uint256 newTotalSupply
    );

    event EmergencyPauseActivated(uint256 timestamp, uint256 maxDuration);
    event EmergencyPauseDeactivated(uint256 timestamp, uint256 duration);

    // ============ Modifiers ============

    /**
     * @notice Restricts function access to the active registry only
     */
    modifier onlyRegistry() {
        if (msg.sender != registry) revert OnlyRegistry();
        _;
    }

    /**
     * @notice Restricts function access to the guardian only
     */
    modifier onlyGuardian() {
        if (msg.sender != guardian) revert OnlyGuardian();
        _;
    }

    /**
     * @notice Ensures pause duration doesn't exceed maximum allowed
     */
    modifier checkPauseDuration() {
        if (paused() && pausedAt > 0) {
            if (block.timestamp > pausedAt + MAX_PAUSE_DURATION) {
                revert PauseDurationExceeded();
            }
        }
        _;
    }

    // ============ Constructor ============

    /**
     * @notice Initialize JUNK token
     * @param initialAllocation Initial tokens minted to deployer (max 50% of MAX_SUPPLY)
     * @dev Owner should transfer ownership to multi-sig after deployment
     */
    constructor(
        uint256 initialAllocation
    ) ERC20("JUNK", "JUNK") ERC20Permit("JUNK") Ownable(msg.sender) {
        if (initialAllocation > MAX_SUPPLY) revert ExceedsMaxSupply();
        if (initialAllocation > MAX_INITIAL_ALLOCATION)
            revert ExceedsInitialAllocation();

        deploymentTime = block.timestamp;

        if (initialAllocation > 0) {
            _mint(msg.sender, initialAllocation * 10 ** 18);
        }
    }

    // ============ Registry Management ============

    /**
     * @notice Set initial registry (can only be called once)
     * @param _registry Address of the registry contract
     *      This allows fixing mistakes during deployment without timelock
     */
    function setInitialRegistry(address _registry) external onlyOwner {
        if (INITIAL_REGISTRY_SET) revert RegistryAlreadySet();
        _validateRegistryComplete(_registry);

        registry = _registry;
        INITIAL_REGISTRY_SET = true;

        emit RegistryUpdated(address(0), _registry, block.timestamp);
    }

    /**
     * @notice Initiate registry change with timelock
     * @param _registry Address of the new registry contract
     * @dev Starts 7-day timelock period. Guardian can cancel during this time.
     */
    function initiateRegistryChange(address _registry) external onlyOwner {
        _validateRegistryComplete(_registry);

        pendingRegistry = _registry;
        registryChangeTime = block.timestamp + REGISTRY_CHANGE_DELAY;

        emit RegistryChangeInitiated(
            _registry,
            registryChangeTime,
            block.timestamp
        );
    }

    /**
     * @notice Finalize registry change after timelock expires
     * @dev Performs complete re-validation to ensure registry hasn't changed
     */
    function finalizeRegistryChange() external onlyOwner {
        if (pendingRegistry == address(0)) revert NoPendingChange();
        if (block.timestamp < registryChangeTime) revert TimelockActive();

        // CRITICAL: Full re-validation before finalizing
        _validateRegistryComplete(pendingRegistry);

        address oldRegistry = registry;
        registry = pendingRegistry;

        // Clear pending state
        pendingRegistry = address(0);
        registryChangeTime = 0;

        emit RegistryUpdated(oldRegistry, registry, block.timestamp);
    }

    /**
     * @notice Cancel pending registry change
     * @dev Can be called by owner or guardian for emergency response
     */
    function cancelRegistryChange() external {
        if (msg.sender != owner() && msg.sender != guardian) {
            revert OnlyGuardian();
        }

        address cancelled = pendingRegistry;
        pendingRegistry = address(0);
        registryChangeTime = 0;

        emit RegistryChangeCancelled(cancelled, msg.sender, block.timestamp);
    }

    /**
     * @notice Set guardian address
     * @param _guardian New guardian address (should be multi-sig)
     * @dev Guardian can emergency cancel registry changes
     */
    function setGuardian(address _guardian) external onlyOwner {
        if (_guardian == address(0)) revert InvalidAddress();

        address oldGuardian = guardian;
        guardian = _guardian;

        emit GuardianUpdated(oldGuardian, _guardian);
    }

    // ============ Registry Operations ============

    /**
     * @notice Mint tokens via registry
     * @param to Address to receive tokens
     * @param amount Amount to mint
     * @dev Only callable by active registry
     *      Validates against MAX_SUPPLY and registry's stated limits
     */
    function mint(address to, uint256 amount) external onlyRegistry {
        if (to == address(0)) revert InvalidAddress();
        if (totalSupply() + amount > MAX_SUPPLY) revert ExceedsMaxSupply();

        // Validate against registry's stated limits for defense in depth
        _validateMintAgainstRegistryLimit(amount);

        _mint(to, amount);

        emit RegistryMinted(msg.sender, to, amount, totalSupply());
    }

    /**
     * @notice Registry-privileged burn (burns from any address without approval)
     * @param from Address to burn from
     * @param amount Amount to burn
     * @dev Only callable by registry. This is a privileged operation.
     *      Users maintain ability to burn their own tokens via standard burn()
     */
    function registryBurnFrom(
        address from,
        uint256 amount
    ) external onlyRegistry {
        if (from == address(0)) revert InvalidAddress();

        _burn(from, amount);

        emit RegistryBurned(msg.sender, from, amount, totalSupply());
    }

    // ============ Standard ERC20 Functions ============

    /**
     * @notice Burn tokens from caller's balance
     * @param amount Amount to burn
     * @dev Standard ERC20Burnable function - anyone can burn their own tokens
     */
    function burn(uint256 amount) public override {
        super.burn(amount);
    }

    /**
     * @notice Burn tokens from another address (requires approval)
     * @param account Address to burn from
     * @param amount Amount to burn
     * @dev Standard ERC20Burnable function - requires prior approval
     */
    function burnFrom(address account, uint256 amount) public override {
        super.burnFrom(account, amount);
    }

    // ============ Emergency Controls ============

    /**
     * @notice Pause all token transfers
     * @dev Only owner can pause. Auto-unpause after MAX_PAUSE_DURATION.
     */
    function pause() external onlyOwner {
        pausedAt = block.timestamp;
        _pause();
        emit EmergencyPauseActivated(pausedAt, MAX_PAUSE_DURATION);
    }

    /**
     * @notice Unpause token transfers
     * @dev Only owner can unpause
     */
    function unpause() external onlyOwner {
        uint256 pauseDuration = block.timestamp - pausedAt;
        pausedAt = 0;
        _unpause();
        emit EmergencyPauseDeactivated(block.timestamp, pauseDuration);
    }

    /**
     * @notice Auto-unpause if max duration exceeded
     * @dev Anyone can call to restore functionality after max pause duration
     */
    function autoUnpause() external {
        if (!paused()) revert("Not paused");
        if (pausedAt == 0) revert("Invalid pause state");
        if (block.timestamp <= pausedAt + MAX_PAUSE_DURATION) {
            revert("Pause duration not exceeded");
        }

        uint256 pauseDuration = block.timestamp - pausedAt;
        pausedAt = 0;
        _unpause();
        emit EmergencyPauseDeactivated(block.timestamp, pauseDuration);
    }

    // ============ View Functions ============

    /**
     * @notice Get time remaining until registry change can be finalized
     * @return remaining Seconds remaining (0 if ready or no pending change)
     */
    function getRegistryChangeTimeRemaining()
        external
        view
        returns (uint256 remaining)
    {
        if (pendingRegistry == address(0)) return 0;
        if (block.timestamp >= registryChangeTime) return 0;
        return registryChangeTime - block.timestamp;
    }

    /**
     * @notice Check if registry change is ready to finalize
     * @return bool True if can finalize
     */
    function canFinalizeRegistryChange() external view returns (bool) {
        return
            pendingRegistry != address(0) &&
            block.timestamp >= registryChangeTime;
    }

    /**
     * @notice Get comprehensive contract state
     * @return currentRegistry Currently active registry
     * @return pendingReg Pending registry (if any)
     * @return timeRemaining Seconds until can finalize
     * @return guardianAddr Guardian address
     * @return isPaused Whether transfers are paused
     * @return pauseTimeRemaining Seconds until auto-unpause (0 if not paused)
     */
    function getContractState()
        external
        view
        returns (
            address currentRegistry,
            address pendingReg,
            uint256 timeRemaining,
            address guardianAddr,
            bool isPaused,
            uint256 pauseTimeRemaining
        )
    {
        currentRegistry = registry;
        pendingReg = pendingRegistry;
        guardianAddr = guardian;
        isPaused = paused();

        if (
            pendingRegistry != address(0) &&
            block.timestamp < registryChangeTime
        ) {
            timeRemaining = registryChangeTime - block.timestamp;
        }

        if (isPaused && pausedAt > 0) {
            uint256 maxUnpauseTime = pausedAt + MAX_PAUSE_DURATION;
            if (block.timestamp < maxUnpauseTime) {
                pauseTimeRemaining = maxUnpauseTime - block.timestamp;
            }
        }
    }

    // ============ Internal Functions ============

    /**
     * @notice Comprehensive registry validation
     * @param _registry Address to validate
     * @dev Checks all required interface functions
     */
    function _validateRegistryComplete(address _registry) internal view {
        if (_registry == address(0)) revert InvalidAddress();
        if (_registry.code.length == 0) revert NotAContract();

        // Validate isValidRegistry()
        try IJUNKRegistry(_registry).isValidRegistry() returns (bool valid) {
            if (!valid) revert InvalidRegistry();
        } catch {
            revert RegistryValidationFailed();
        }
        // Validate version()
        try IJUNKRegistry(_registry).version() returns (uint256 version) {
            if (version == 0) revert InvalidVersion();
        } catch {
            revert InvalidVersion();
        }
        // Validate maxMintPerOperation()
        try IJUNKRegistry(_registry).maxMintPerOperation() returns (uint256) {
            // Success - function exists and returns
        } catch {
            revert MaxMintOperationFailed();
        }
        // Validate hasRateLimits()
        try IJUNKRegistry(_registry).hasRateLimits() returns (bool) {
            // Success - function exists and returns
        } catch {
            revert HasRateLimitsFailed();
        }
        // Validate isPaused()
        try IJUNKRegistry(_registry).isPaused() returns (bool registryPaused) {
            if (registryPaused) revert RegistryReportsPaused();
        } catch {
            revert IsPausedCheckFailed();
        }
    }

    /**
     * @notice Validate mint amount against registry limits
     * @param amount Amount to validate
     * @dev Enforces registry's self-imposed limits for defense in depth
     */
    function _validateMintAgainstRegistryLimit(uint256 amount) internal view {
        try IJUNKRegistry(registry).maxMintPerOperation() returns (
            uint256 maxMint
        ) {
            if (maxMint > 0 && amount > maxMint) {
                revert ExceedsRegistryLimit();
            }
        } catch {
            // If we can't verify limits, fail closed for safety
            revert CannotVerifyLimit();
        }
    }

    /**
     * @notice Required override for ERC20Pausable
     * @dev Includes pause duration check
     */
    function _update(
        address from,
        address to,
        uint256 value
    ) internal override(ERC20, ERC20Pausable) checkPauseDuration {
        super._update(from, to, value);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {Ownable} from "./Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * This extension of the {Ownable} contract includes a two-step mechanism to transfer
 * ownership, where the new owner must call {acceptOwnership} in order to replace the
 * old one. This can help prevent common mistakes, such as transfers of ownership to
 * incorrect accounts, or to contracts that are unable to interact with the
 * permission system.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     *
     * Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.20;

import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";

/**
 * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
    bytes32 private constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address signer, address owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC-20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /// @inheritdoc IERC20Permit
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _approve(owner, spender, value);
    }

    /// @inheritdoc IERC20Permit
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /// @inheritdoc IERC20Permit
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }
}

File 4 of 25 : ERC20Pausable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Pausable.sol)

pragma solidity ^0.8.20;

import {ERC20} from "../ERC20.sol";
import {Pausable} from "../../../utils/Pausable.sol";

/**
 * @dev ERC-20 token with pausable token transfers, minting and burning.
 *
 * Useful for scenarios such as preventing trades until the end of an evaluation
 * period, or having an emergency switch for freezing all token transfers in the
 * event of a large bug.
 *
 * IMPORTANT: This contract does not include public pause and unpause functions. In
 * addition to inheriting this contract, you must define both functions, invoking the
 * {Pausable-_pause} and {Pausable-_unpause} internal functions, with appropriate
 * access control, e.g. using {AccessControl} or {Ownable}. Not doing so will
 * make the contract pause mechanism of the contract unreachable, and thus unusable.
 */
abstract contract ERC20Pausable is ERC20, Pausable {
    /**
     * @dev See {ERC20-_update}.
     *
     * Requirements:
     *
     * - the contract must not be paused.
     */
    function _update(address from, address to, uint256 value) internal virtual override whenNotPaused {
        super._update(from, to, value);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol)

pragma solidity ^0.8.20;

import {ERC20} from "../ERC20.sol";
import {Context} from "../../../utils/Context.sol";

/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
abstract contract ERC20Burnable is Context, ERC20 {
    /**
     * @dev Destroys a `value` amount of tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 value) public virtual {
        _burn(_msgSender(), value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, deducting from
     * the caller's allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `value`.
     */
    function burnFrom(address account, uint256 value) public virtual {
        _spendAllowance(account, _msgSender(), value);
        _burn(account, value);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * Both values are immutable: they can only be set once during construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /// @inheritdoc IERC20
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /// @inheritdoc IERC20
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /// @inheritdoc IERC20
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner`'s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    // slither-disable-next-line constable-states
    string private _nameFallback;
    // slither-disable-next-line constable-states
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /// @inheritdoc IERC5267
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Pausable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    bool private _paused;

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/draft-IERC6093.sol)
pragma solidity >=0.8.4;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity >=0.6.2;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 17 of 25 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC5267.sol)

pragma solidity >=0.4.16;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {toShortStringWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
     */
    function toDataWithIntendedValidatorHash(
        address validator,
        bytes32 messageHash
    ) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, hex"19_00")
            mstore(0x02, shl(96, validator))
            mstore(0x16, messageHash)
            digest := keccak256(0x00, 0x36)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(add(buffer, 0x20), length)
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     *
     * NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
     * RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
     * characters that are not in this range, but other tooling may provide different results.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;

        for (uint256 i; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }

        return string(output);
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(add(buffer, 0x20), offset))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

File 23 of 25 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 24 of 25 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "remappings": []
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"uint256","name":"initialAllocation","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"CannotVerifyLimit","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ERC2612ExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC2612InvalidSigner","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExceedsInitialAllocation","type":"error"},{"inputs":[],"name":"ExceedsMaxSupply","type":"error"},{"inputs":[],"name":"ExceedsRegistryLimit","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[],"name":"HasRateLimitsFailed","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidAddress","type":"error"},{"inputs":[],"name":"InvalidRegistry","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"InvalidVersion","type":"error"},{"inputs":[],"name":"IsPausedCheckFailed","type":"error"},{"inputs":[],"name":"MaxMintOperationFailed","type":"error"},{"inputs":[],"name":"NoPendingChange","type":"error"},{"inputs":[],"name":"NotAContract","type":"error"},{"inputs":[],"name":"OnlyGuardian","type":"error"},{"inputs":[],"name":"OnlyRegistry","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"PauseDurationExceeded","type":"error"},{"inputs":[],"name":"RegistryAlreadySet","type":"error"},{"inputs":[],"name":"RegistryDestroyed","type":"error"},{"inputs":[],"name":"RegistryNoLongerValid","type":"error"},{"inputs":[],"name":"RegistryReportsPaused","type":"error"},{"inputs":[],"name":"RegistryValidationFailed","type":"error"},{"inputs":[],"name":"SetupPeriodExpired","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"inputs":[],"name":"TimelockActive","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"maxDuration","type":"uint256"}],"name":"EmergencyPauseActivated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"duration","type":"uint256"}],"name":"EmergencyPauseDeactivated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldGuardian","type":"address"},{"indexed":true,"internalType":"address","name":"newGuardian","type":"address"}],"name":"GuardianUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"registry","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newTotalSupply","type":"uint256"}],"name":"RegistryBurned","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"cancelledRegistry","type":"address"},{"indexed":true,"internalType":"address","name":"cancelledBy","type":"address"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"RegistryChangeCancelled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newRegistry","type":"address"},{"indexed":false,"internalType":"uint256","name":"effectiveTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"initiatedAt","type":"uint256"}],"name":"RegistryChangeInitiated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"registry","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newTotalSupply","type":"uint256"}],"name":"RegistryMinted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldRegistry","type":"address"},{"indexed":true,"internalType":"address","name":"newRegistry","type":"address"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"RegistryUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_INITIAL_ALLOCATION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_PAUSE_DURATION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_SUPPLY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"REGISTRY_CHANGE_DELAY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"autoUnpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"canFinalizeRegistryChange","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"cancelRegistryChange","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"deploymentTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"finalizeRegistryChange","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getContractState","outputs":[{"internalType":"address","name":"currentRegistry","type":"address"},{"internalType":"address","name":"pendingReg","type":"address"},{"internalType":"uint256","name":"timeRemaining","type":"uint256"},{"internalType":"address","name":"guardianAddr","type":"address"},{"internalType":"bool","name":"isPaused","type":"bool"},{"internalType":"uint256","name":"pauseTimeRemaining","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRegistryChangeTimeRemaining","outputs":[{"internalType":"uint256","name":"remaining","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"guardian","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_registry","type":"address"}],"name":"initiateRegistryChange","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pausedAt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingRegistry","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"registry","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"registryBurnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"registryChangeTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_guardian","type":"address"}],"name":"setGuardian","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_registry","type":"address"}],"name":"setInitialRegistry","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"}]

6101806040525f600a60146101000a81548160ff02191690831515021790555034801561002a575f5ffd5b50604051614dcc380380614dcc833981810160405281019061004c919061092a565b336040518060400160405280600481526020017f4a554e4b00000000000000000000000000000000000000000000000000000000815250806040518060400160405280600181526020017f31000000000000000000000000000000000000000000000000000000000000008152506040518060400160405280600481526020017f4a554e4b000000000000000000000000000000000000000000000000000000008152506040518060400160405280600481526020017f4a554e4b0000000000000000000000000000000000000000000000000000000081525081600390816101359190610b89565b5080600490816101459190610b89565b50505061015c60068361034660201b90919060201c565b610120818152505061017860078261034660201b90919060201c565b6101408181525050818051906020012060e08181525050808051906020012061010081815250504660a081815250506101b561039360201b60201c565b608081815250503073ffffffffffffffffffffffffffffffffffffffff1660c08173ffffffffffffffffffffffffffffffffffffffff16815250505050505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603610263575f6040517f1e4fbdf700000000000000000000000000000000000000000000000000000000815260040161025a9190610c97565b60405180910390fd5b610272816103ed60201b60201c565b506b033b2e3c9fd0803ce80000008111156102b9576040517fc30436e900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60026b033b2e3c9fd0803ce80000006102d29190610d0a565b81111561030b576040517f762d55dc00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b4261016081815250505f8111156103405761033f33670de0b6b3a7640000836103349190610d3a565b61042360201b60201c565b5b50610f8d565b5f60208351101561036757610360836104a860201b60201c565b905061038d565b826103778361050d60201b60201c565b5f0190816103859190610b89565b5060ff5f1b90505b92915050565b5f7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60e0516101005146306040516020016103d2959493929190610da2565b60405160208183030381529060405280519060200120905090565b600a5f6101000a81549073ffffffffffffffffffffffffffffffffffffffff02191690556104208161051660201b60201c565b50565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610493575f6040517fec442f0500000000000000000000000000000000000000000000000000000000815260040161048a9190610c97565b60405180910390fd5b6104a45f83836105d960201b60201c565b5050565b5f5f829050601f815111156104f457826040517f305a27a90000000000000000000000000000000000000000000000000000000081526004016104eb9190610e59565b60405180910390fd5b80518161050090610ea6565b5f1c175f1b915050919050565b5f819050919050565b5f60095f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160095f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b6105e761065a60201b60201c565b80156105f457505f600f54115b156106445762278d00600f5461060a9190610f0c565b421115610643576040517f81c1171900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5b61065583838361066f60201b60201c565b505050565b5f60055f9054906101000a900460ff16905090565b61067d61069360201b60201c565b61068e8383836106da60201b60201c565b505050565b6106a161065a60201b60201c565b156106d8576040517fd93c066500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff160361072a578060025f82825461071e9190610f0c565b925050819055506107f8565b5f5f5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050818110156107b3578381836040517fe450d38c0000000000000000000000000000000000000000000000000000000081526004016107aa93929190610f3f565b60405180910390fd5b8181035f5f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550505b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361083f578060025f8282540392505081905550610889565b805f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055505b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516108e69190610f74565b60405180910390a3505050565b5f5ffd5b5f819050919050565b610909816108f7565b8114610913575f5ffd5b50565b5f8151905061092481610900565b92915050565b5f6020828403121561093f5761093e6108f3565b5b5f61094c84828501610916565b91505092915050565b5f81519050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806109d057607f821691505b6020821081036109e3576109e261098c565b5b50919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f60088302610a457fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82610a0a565b610a4f8683610a0a565b95508019841693508086168417925050509392505050565b5f819050919050565b5f610a8a610a85610a80846108f7565b610a67565b6108f7565b9050919050565b5f819050919050565b610aa383610a70565b610ab7610aaf82610a91565b848454610a16565b825550505050565b5f5f905090565b610ace610abf565b610ad9818484610a9a565b505050565b5b81811015610afc57610af15f82610ac6565b600181019050610adf565b5050565b601f821115610b4157610b12816109e9565b610b1b846109fb565b81016020851015610b2a578190505b610b3e610b36856109fb565b830182610ade565b50505b505050565b5f82821c905092915050565b5f610b615f1984600802610b46565b1980831691505092915050565b5f610b798383610b52565b9150826002028217905092915050565b610b9282610955565b67ffffffffffffffff811115610bab57610baa61095f565b5b610bb582546109b9565b610bc0828285610b00565b5f60209050601f831160018114610bf1575f8415610bdf578287015190505b610be98582610b6e565b865550610c50565b601f198416610bff866109e9565b5f5b82811015610c2657848901518255600182019150602085019450602081019050610c01565b86831015610c435784890151610c3f601f891682610b52565b8355505b6001600288020188555050505b505050505050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f610c8182610c58565b9050919050565b610c9181610c77565b82525050565b5f602082019050610caa5f830184610c88565b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f610d14826108f7565b9150610d1f836108f7565b925082610d2f57610d2e610cb0565b5b828204905092915050565b5f610d44826108f7565b9150610d4f836108f7565b9250828202610d5d816108f7565b91508282048414831517610d7457610d73610cdd565b5b5092915050565b5f819050919050565b610d8d81610d7b565b82525050565b610d9c816108f7565b82525050565b5f60a082019050610db55f830188610d84565b610dc26020830187610d84565b610dcf6040830186610d84565b610ddc6060830185610d93565b610de96080830184610c88565b9695505050505050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f610e2b82610955565b610e358185610df3565b9350610e45818560208601610e03565b610e4e81610e11565b840191505092915050565b5f6020820190508181035f830152610e718184610e21565b905092915050565b5f81519050919050565b5f819050602082019050919050565b5f610e9d8251610d7b565b80915050919050565b5f610eb082610e79565b82610eba84610e83565b9050610ec581610e92565b92506020821015610f0557610f007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff83602003600802610a0a565b831692505b5050919050565b5f610f16826108f7565b9150610f21836108f7565b9250828201905080821115610f3957610f38610cdd565b5b92915050565b5f606082019050610f525f830186610c88565b610f5f6020830185610d93565b610f6c6040830184610d93565b949350505050565b5f602082019050610f875f830184610d93565b92915050565b60805160a05160c05160e05161010051610120516101405161016051613de4610fe85f395f611bd201525f6127c701525f61278c01525f612b1c01525f612afb01525f61235d01525f6123b301525f6123dc0152613de45ff3fe608060405234801561000f575f5ffd5b5060043610610272575f3560e01c806379ba50971161014f578063a9059cbb116100c1578063d505accf11610085578063d505accf146106b5578063dd62ed3e146106d1578063e30c397814610701578063ecda10f51461071f578063f2fde38b1461073d578063f46008ae1461075957610272565b8063a9059cbb14610637578063aabf2d6014610667578063aca62e0014610671578063b874b67b1461067b578063c2db5b571461069957610272565b80638456cb59116101135780638456cb591461059357806384b0196e1461059d5780638a0dac4a146105c15780638da5cb5b146105dd578063928b9e90146105fb57806395d89b411461061957610272565b806379ba5097146104fc57806379cc6790146105065780637b103999146105225780637ecebe00146105405780637f4e48491461057057610272565b80633f4ba83a116101e857806349e1783f116101ac57806349e1783f1461044e5780635146034a1461046a5780635c975abb146104885780636c785891146104a657806370a08231146104c2578063715018a6146104f257610272565b80633f4ba83a146103d057806340c10f19146103da57806341da2980146103f657806342966c6814610414578063452a93201461043057610272565b80632799657d1161023a5780632799657d146103305780632dc054521461034e5780632e55d0f214610358578063313ce5671461037657806332cb6b0c146103945780633644e515146103b257610272565b806306fdde03146102765780630935d2d214610294578063095ea7b3146102b257806318160ddd146102e257806323b872dd14610300575b5f5ffd5b61027e610777565b60405161028b9190613347565b60405180910390f35b61029c610807565b6040516102a9919061337f565b60405180910390f35b6102cc60048036038101906102c79190613420565b610889565b6040516102d99190613478565b60405180910390f35b6102ea6108ab565b6040516102f7919061337f565b60405180910390f35b61031a60048036038101906103159190613491565b6108b4565b6040516103279190613478565b60405180910390f35b6103386108e2565b604051610345919061337f565b60405180910390f35b6103566108e9565b005b610360610b33565b60405161036d919061337f565b60405180910390f35b61037e610b39565b60405161038b91906134fc565b60405180910390f35b61039c610b41565b6040516103a9919061337f565b60405180910390f35b6103ba610b51565b6040516103c7919061352d565b60405180910390f35b6103d8610b5f565b005b6103f460048036038101906103ef9190613420565b610bc3565b005b6103fe610d8b565b60405161040b9190613555565b60405180910390f35b61042e6004803603810190610429919061356e565b610db0565b005b610438610dbc565b6040516104459190613555565b60405180910390f35b61046860048036038101906104639190613599565b610de1565b005b610472610efc565b60405161047f919061337f565b60405180910390f35b610490610f03565b60405161049d9190613478565b60405180910390f35b6104c060048036038101906104bb9190613420565b610f18565b005b6104dc60048036038101906104d79190613599565b61107f565b6040516104e9919061337f565b60405180910390f35b6104fa6110c4565b005b6105046110d7565b005b610520600480360381019061051b9190613420565b611165565b005b61052a611173565b6040516105379190613555565b60405180910390f35b61055a60048036038101906105559190613599565b611198565b604051610567919061337f565b60405180910390f35b6105786111a9565b60405161058a969594939291906135c4565b60405180910390f35b61059b6112e1565b005b6105a5611338565b6040516105b89796959493929190613714565b60405180910390f35b6105db60048036038101906105d69190613599565b6113dd565b005b6105e561150d565b6040516105f29190613555565b60405180910390f35b610603611535565b604051610610919061337f565b60405180910390f35b61062161153b565b60405161062e9190613347565b60405180910390f35b610651600480360381019061064c9190613420565b6115cb565b60405161065e9190613478565b60405180910390f35b61066f6115ed565b005b610679611788565b005b6106836118c1565b6040516106909190613478565b60405180910390f35b6106b360048036038101906106ae9190613599565b611926565b005b6106cf60048036038101906106ca91906137ea565b6119e1565b005b6106eb60048036038101906106e69190613887565b611b26565b6040516106f8919061337f565b60405180910390f35b610709611ba8565b6040516107169190613555565b60405180910390f35b610727611bd0565b604051610734919061337f565b60405180910390f35b61075760048036038101906107529190613599565b611bf4565b005b610761611ca0565b60405161076e919061337f565b60405180910390f35b606060038054610786906138f2565b80601f01602080910402602001604051908101604052809291908181526020018280546107b2906138f2565b80156107fd5780601f106107d4576101008083540402835291602001916107fd565b820191905f5260205f20905b8154815290600101906020018083116107e057829003601f168201915b5050505050905090565b5f5f73ffffffffffffffffffffffffffffffffffffffff16600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1603610864575f9050610886565b600e544210610875575f9050610886565b42600e54610883919061394f565b90505b90565b5f5f610893611cbc565b90506108a0818585611cc3565b600191505092915050565b5f600254905090565b5f5f6108be611cbc565b90506108cb858285611cd5565b6108d6858585611d68565b60019150509392505050565b62278d0081565b6108f1611e58565b5f73ffffffffffffffffffffffffffffffffffffffff16600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1603610977576040517fa3fef2f800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600e544210156109b3576040517f7d857b6700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6109dd600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16611edf565b5f600b5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16600b5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505f600d5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505f600e81905550600b5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f724c89272c35417e239c6cd89ada342e0717632938f38b47eaacecacf291ace242604051610b28919061337f565b60405180910390a350565b600f5481565b5f6012905090565b6b033b2e3c9fd0803ce800000081565b5f610b5a61235a565b905090565b610b67611e58565b5f600f5442610b76919061394f565b90505f600f81905550610b87612410565b7ff8c3ad369ecdb7fc19ae680f4b96c1308bfdcab369498d9320a8736bff96feb54282604051610bb8929190613982565b60405180910390a150565b600b5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614610c49576040517f87aa01c800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610cae576040517fe6c4247b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6b033b2e3c9fd0803ce800000081610cc46108ab565b610cce91906139a9565b1115610d06576040517fc30436e900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b610d0f81612471565b610d198282612579565b8173ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff167fea11a982fded92c9d2abb611c87cef478ee78bf72754ee71b05b941b4271872083610d716108ab565b604051610d7f929190613982565b60405180910390a35050565b600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b610db9816125f8565b50565b600c5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b610de9611e58565b600a60149054906101000a900460ff1615610e30576040517f07a554d900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b610e3981611edf565b80600b5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055506001600a60146101000a81548160ff0219169083151502179055508073ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff167f724c89272c35417e239c6cd89ada342e0717632938f38b47eaacecacf291ace242604051610ef1919061337f565b60405180910390a350565b62093a8081565b5f60055f9054906101000a900460ff16905090565b600b5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614610f9e576040517f87aa01c800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611003576040517fe6c4247b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61100d828261260c565b8173ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff167f6290ab9c6c3b68bd5883b4c8c5af8a3d0778d07d2d89b542aed1f701648dd250836110656108ab565b604051611073929190613982565b60405180910390a35050565b5f5f5f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6110cc611e58565b6110d55f61268b565b565b5f6110e0611cbc565b90508073ffffffffffffffffffffffffffffffffffffffff16611101611ba8565b73ffffffffffffffffffffffffffffffffffffffff161461115957806040517f118cdaa70000000000000000000000000000000000000000000000000000000081526004016111509190613555565b60405180910390fd5b6111628161268b565b50565b61116f82826126bb565b5050565b600b5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b5f6111a2826126db565b9050919050565b5f5f5f5f5f5f600b5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169550600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169450600c5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169250611223610f03565b91505f73ffffffffffffffffffffffffffffffffffffffff16600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16141580156112835750600e5442105b156112995742600e54611296919061394f565b93505b8180156112a757505f600f54115b156112d9575f62278d00600f546112be91906139a9565b9050804210156112d75742816112d4919061394f565b91505b505b909192939495565b6112e9611e58565b42600f819055506112f8612721565b7feea94b8a140053263411d3e6e3316b9c7324b6011febeb4d13c40762de03b651600f5462278d0060405161132e929190613982565b60405180910390a1565b5f6060805f5f5f6060611349612783565b6113516127be565b46305f5f1b5f67ffffffffffffffff8111156113705761136f6139dc565b5b60405190808252806020026020018201604052801561139e5781602001602082028036833780820191505090505b507f0f00000000000000000000000000000000000000000000000000000000000000959493929190965096509650965096509650965090919293949596565b6113e5611e58565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361144a576040517fe6c4247b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f600c5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905081600c5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f064d28d3d3071c5cbc271a261c10c2f0f0d9e319390397101aa0eb23c6bad90960405160405180910390a35050565b5f60095f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b600e5481565b60606004805461154a906138f2565b80601f0160208091040260200160405190810160405280929190818152602001828054611576906138f2565b80156115c15780601f10611598576101008083540402835291602001916115c1565b820191905f5260205f20905b8154815290600101906020018083116115a457829003601f168201915b5050505050905090565b5f5f6115d5611cbc565b90506115e2818585611d68565b600191505092915050565b6115f561150d565b73ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff161415801561167d5750600c5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614155b156116b4576040517fcae1d95600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690505f600d5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505f600e819055503373ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f5e92de2d7275824013139de061ae5baf26037306f7ce3277bfd652be323650404260405161177d919061337f565b60405180910390a350565b611790610f03565b6117cf576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016117c690613a53565b60405180910390fd5b5f600f5403611813576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161180a90613abb565b60405180910390fd5b62278d00600f5461182491906139a9565b4211611865576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161185c90613b23565b60405180910390fd5b5f600f5442611874919061394f565b90505f600f81905550611885612410565b7ff8c3ad369ecdb7fc19ae680f4b96c1308bfdcab369498d9320a8736bff96feb542826040516118b6929190613982565b60405180910390a150565b5f5f73ffffffffffffffffffffffffffffffffffffffff16600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16141580156119215750600e544210155b905090565b61192e611e58565b61193781611edf565b80600d5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555062093a804261198691906139a9565b600e819055508073ffffffffffffffffffffffffffffffffffffffff167f5e52fd8c1ec2db0a86771dcce58ebfc3d0778781415180efe892fbc9e2edc27f600e54426040516119d6929190613982565b60405180910390a250565b83421115611a2657836040517f62791302000000000000000000000000000000000000000000000000000000008152600401611a1d919061337f565b60405180910390fd5b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9888888611a548c6127f9565b89604051602001611a6a96959493929190613b41565b6040516020818303038152906040528051906020012090505f611a8c8261284c565b90505f611a9b82878787612865565b90508973ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614611b0f57808a6040517f4b800e46000000000000000000000000000000000000000000000000000000008152600401611b06929190613ba0565b60405180910390fd5b611b1a8a8a8a611cc3565b50505050505050505050565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b5f600a5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b7f000000000000000000000000000000000000000000000000000000000000000081565b611bfc611e58565b80600a5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508073ffffffffffffffffffffffffffffffffffffffff16611c5b61150d565b73ffffffffffffffffffffffffffffffffffffffff167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b60026b033b2e3c9fd0803ce8000000611cb99190613bf4565b81565b5f33905090565b611cd08383836001612893565b505050565b5f611ce08484611b26565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff811015611d625781811015611d53578281836040517ffb8f41b2000000000000000000000000000000000000000000000000000000008152600401611d4a93929190613c24565b60405180910390fd5b611d6184848484035f612893565b5b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611dd8575f6040517f96c6fd1e000000000000000000000000000000000000000000000000000000008152600401611dcf9190613555565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611e48575f6040517fec442f05000000000000000000000000000000000000000000000000000000008152600401611e3f9190613555565b60405180910390fd5b611e53838383612a62565b505050565b611e60611cbc565b73ffffffffffffffffffffffffffffffffffffffff16611e7e61150d565b73ffffffffffffffffffffffffffffffffffffffff1614611edd57611ea1611cbc565b6040517f118cdaa7000000000000000000000000000000000000000000000000000000008152600401611ed49190613555565b60405180910390fd5b565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603611f44576040517fe6c4247b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8173ffffffffffffffffffffffffffffffffffffffff163b03611f94576040517f09ee12d500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8073ffffffffffffffffffffffffffffffffffffffff166395eb82d56040518163ffffffff1660e01b8152600401602060405180830381865afa925050508015611ffc57506040513d601f19601f82011682018060405250810190611ff99190613c83565b60015b612032576040517f511a416100000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80612069576040517f11a1e69700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b508073ffffffffffffffffffffffffffffffffffffffff166354fd4d506040518163ffffffff1660e01b8152600401602060405180830381865afa9250505080156120d257506040513d601f19601f820116820180604052508101906120cf9190613cc2565b60015b612108576040517fa9146eeb00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8103612141576040517fa9146eeb00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b508073ffffffffffffffffffffffffffffffffffffffff1663bd9bfee36040518163ffffffff1660e01b8152600401602060405180830381865afa9250505080156121aa57506040513d601f19601f820116820180604052508101906121a79190613cc2565b60015b6121e0576040517f3857560200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b508073ffffffffffffffffffffffffffffffffffffffff1663fd7b96ce6040518163ffffffff1660e01b8152600401602060405180830381865afa92505050801561224957506040513d601f19601f820116820180604052508101906122469190613c83565b60015b61227f576040517fd74f9f2b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b508073ffffffffffffffffffffffffffffffffffffffff1663b187bd266040518163ffffffff1660e01b8152600401602060405180830381865afa9250505080156122e857506040513d601f19601f820116820180604052508101906122e59190613c83565b60015b61231e576040517f879d4bae00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8015612356576040517ff5e9253a00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5050565b5f7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff163073ffffffffffffffffffffffffffffffffffffffff161480156123d557507f000000000000000000000000000000000000000000000000000000000000000046145b15612402577f0000000000000000000000000000000000000000000000000000000000000000905061240d565b61240a612ad7565b90505b90565b612418612b6c565b5f60055f6101000a81548160ff0219169083151502179055507f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa61245a611cbc565b6040516124679190613555565b60405180910390a1565b600b5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663bd9bfee36040518163ffffffff1660e01b8152600401602060405180830381865afa9250505080156124fa57506040513d601f19601f820116820180604052508101906124f79190613cc2565b60015b612530576040517fd3f0a2ef00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8111801561253e57508082115b15612575576040517f20269ecc00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5050565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036125e9575f6040517fec442f050000000000000000000000000000000000000000000000000000000081526004016125e09190613555565b60405180910390fd5b6125f45f8383612a62565b5050565b612609612603611cbc565b8261260c565b50565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361267c575f6040517f96c6fd1e0000000000000000000000000000000000000000000000000000000081526004016126739190613555565b60405180910390fd5b612687825f83612a62565b5050565b600a5f6101000a81549073ffffffffffffffffffffffffffffffffffffffff02191690556126b881612bac565b50565b6126cd826126c7611cbc565b83611cd5565b6126d7828261260c565b5050565b5f60085f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b612729612c6f565b600160055f6101000a81548160ff0219169083151502179055507f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a25861276c611cbc565b6040516127799190613555565b60405180910390a1565b60606127b960067f0000000000000000000000000000000000000000000000000000000000000000612cb090919063ffffffff16565b905090565b60606127f460077f0000000000000000000000000000000000000000000000000000000000000000612cb090919063ffffffff16565b905090565b5f60085f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f815480929190600101919050559050919050565b5f61285e61285861235a565b83612d5d565b9050919050565b5f5f5f5f61287588888888612d9d565b9250925092506128858282612e84565b829350505050949350505050565b5f73ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff1603612903575f6040517fe602df050000000000000000000000000000000000000000000000000000000081526004016128fa9190613555565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603612973575f6040517f94280d6200000000000000000000000000000000000000000000000000000000815260040161296a9190613555565b60405180910390fd5b8160015f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508015612a5c578273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051612a53919061337f565b60405180910390a35b50505050565b612a6a610f03565b8015612a7757505f600f54115b15612ac75762278d00600f54612a8d91906139a9565b421115612ac6576040517f81c1171900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5b612ad2838383612fe6565b505050565b5f7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000004630604051602001612b51959493929190613ced565b60405160208183030381529060405280519060200120905090565b612b74610f03565b612baa576040517f8dfc202b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f60095f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160095f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b612c77610f03565b15612cae576040517fd93c066500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b606060ff5f1b8314612ccc57612cc583612ffe565b9050612d57565b818054612cd8906138f2565b80601f0160208091040260200160405190810160405280929190818152602001828054612d04906138f2565b8015612d4f5780601f10612d2657610100808354040283529160200191612d4f565b820191905f5260205f20905b815481529060010190602001808311612d3257829003601f168201915b505050505090505b92915050565b5f6040517f190100000000000000000000000000000000000000000000000000000000000081528360028201528260228201526042812091505092915050565b5f5f5f7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0845f1c1115612dd9575f600385925092509250612e7a565b5f6001888888886040515f8152602001604052604051612dfc9493929190613d3e565b6020604051602081039080840390855afa158015612e1c573d5f5f3e3d5ffd5b5050506020604051035190505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603612e6d575f60015f5f1b93509350935050612e7a565b805f5f5f1b935093509350505b9450945094915050565b5f6003811115612e9757612e96613d81565b5b826003811115612eaa57612ea9613d81565b5b0315612fe25760016003811115612ec457612ec3613d81565b5b826003811115612ed757612ed6613d81565b5b03612f0e576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60026003811115612f2257612f21613d81565b5b826003811115612f3557612f34613d81565b5b03612f7957805f1c6040517ffce698f7000000000000000000000000000000000000000000000000000000008152600401612f70919061337f565b60405180910390fd5b600380811115612f8c57612f8b613d81565b5b826003811115612f9f57612f9e613d81565b5b03612fe157806040517fd78bce0c000000000000000000000000000000000000000000000000000000008152600401612fd8919061352d565b60405180910390fd5b5b5050565b612fee612c6f565b612ff9838383613070565b505050565b60605f61300a83613289565b90505f602067ffffffffffffffff811115613028576130276139dc565b5b6040519080825280601f01601f19166020018201604052801561305a5781602001600182028036833780820191505090505b5090508181528360208201528092505050919050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036130c0578060025f8282546130b491906139a9565b9250508190555061318e565b5f5f5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015613149578381836040517fe450d38c00000000000000000000000000000000000000000000000000000000815260040161314093929190613c24565b60405180910390fd5b8181035f5f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550505b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036131d5578060025f828254039250508190555061321f565b805f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055505b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161327c919061337f565b60405180910390a3505050565b5f5f60ff835f1c169050601f8111156132ce576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80915050919050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f613319826132d7565b61332381856132e1565b93506133338185602086016132f1565b61333c816132ff565b840191505092915050565b5f6020820190508181035f83015261335f818461330f565b905092915050565b5f819050919050565b61337981613367565b82525050565b5f6020820190506133925f830184613370565b92915050565b5f5ffd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6133c58261339c565b9050919050565b6133d5816133bb565b81146133df575f5ffd5b50565b5f813590506133f0816133cc565b92915050565b6133ff81613367565b8114613409575f5ffd5b50565b5f8135905061341a816133f6565b92915050565b5f5f6040838503121561343657613435613398565b5b5f613443858286016133e2565b92505060206134548582860161340c565b9150509250929050565b5f8115159050919050565b6134728161345e565b82525050565b5f60208201905061348b5f830184613469565b92915050565b5f5f5f606084860312156134a8576134a7613398565b5b5f6134b5868287016133e2565b93505060206134c6868287016133e2565b92505060406134d78682870161340c565b9150509250925092565b5f60ff82169050919050565b6134f6816134e1565b82525050565b5f60208201905061350f5f8301846134ed565b92915050565b5f819050919050565b61352781613515565b82525050565b5f6020820190506135405f83018461351e565b92915050565b61354f816133bb565b82525050565b5f6020820190506135685f830184613546565b92915050565b5f6020828403121561358357613582613398565b5b5f6135908482850161340c565b91505092915050565b5f602082840312156135ae576135ad613398565b5b5f6135bb848285016133e2565b91505092915050565b5f60c0820190506135d75f830189613546565b6135e46020830188613546565b6135f16040830187613370565b6135fe6060830186613546565b61360b6080830185613469565b61361860a0830184613370565b979650505050505050565b5f7fff0000000000000000000000000000000000000000000000000000000000000082169050919050565b61365781613623565b82525050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b61368f81613367565b82525050565b5f6136a08383613686565b60208301905092915050565b5f602082019050919050565b5f6136c28261365d565b6136cc8185613667565b93506136d783613677565b805f5b838110156137075781516136ee8882613695565b97506136f9836136ac565b9250506001810190506136da565b5085935050505092915050565b5f60e0820190506137275f83018a61364e565b8181036020830152613739818961330f565b9050818103604083015261374d818861330f565b905061375c6060830187613370565b6137696080830186613546565b61377660a083018561351e565b81810360c083015261378881846136b8565b905098975050505050505050565b61379f816134e1565b81146137a9575f5ffd5b50565b5f813590506137ba81613796565b92915050565b6137c981613515565b81146137d3575f5ffd5b50565b5f813590506137e4816137c0565b92915050565b5f5f5f5f5f5f5f60e0888a03121561380557613804613398565b5b5f6138128a828b016133e2565b97505060206138238a828b016133e2565b96505060406138348a828b0161340c565b95505060606138458a828b0161340c565b94505060806138568a828b016137ac565b93505060a06138678a828b016137d6565b92505060c06138788a828b016137d6565b91505092959891949750929550565b5f5f6040838503121561389d5761389c613398565b5b5f6138aa858286016133e2565b92505060206138bb858286016133e2565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f600282049050600182168061390957607f821691505b60208210810361391c5761391b6138c5565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61395982613367565b915061396483613367565b925082820390508181111561397c5761397b613922565b5b92915050565b5f6040820190506139955f830185613370565b6139a26020830184613370565b9392505050565b5f6139b382613367565b91506139be83613367565b92508282019050808211156139d6576139d5613922565b5b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f4e6f7420706175736564000000000000000000000000000000000000000000005f82015250565b5f613a3d600a836132e1565b9150613a4882613a09565b602082019050919050565b5f6020820190508181035f830152613a6a81613a31565b9050919050565b7f496e76616c6964207061757365207374617465000000000000000000000000005f82015250565b5f613aa56013836132e1565b9150613ab082613a71565b602082019050919050565b5f6020820190508181035f830152613ad281613a99565b9050919050565b7f5061757365206475726174696f6e206e6f7420657863656564656400000000005f82015250565b5f613b0d601b836132e1565b9150613b1882613ad9565b602082019050919050565b5f6020820190508181035f830152613b3a81613b01565b9050919050565b5f60c082019050613b545f83018961351e565b613b616020830188613546565b613b6e6040830187613546565b613b7b6060830186613370565b613b886080830185613370565b613b9560a0830184613370565b979650505050505050565b5f604082019050613bb35f830185613546565b613bc06020830184613546565b9392505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f613bfe82613367565b9150613c0983613367565b925082613c1957613c18613bc7565b5b828204905092915050565b5f606082019050613c375f830186613546565b613c446020830185613370565b613c516040830184613370565b949350505050565b613c628161345e565b8114613c6c575f5ffd5b50565b5f81519050613c7d81613c59565b92915050565b5f60208284031215613c9857613c97613398565b5b5f613ca584828501613c6f565b91505092915050565b5f81519050613cbc816133f6565b92915050565b5f60208284031215613cd757613cd6613398565b5b5f613ce484828501613cae565b91505092915050565b5f60a082019050613d005f83018861351e565b613d0d602083018761351e565b613d1a604083018661351e565b613d276060830185613370565b613d346080830184613546565b9695505050505050565b5f608082019050613d515f83018761351e565b613d5e60208301866134ed565b613d6b604083018561351e565b613d78606083018461351e565b95945050505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffdfea2646970667358221220eca864677af4a5475fc801a4f28cea70f078ade365e0bad0b0d26f05b64ffb6164736f6c634300081b003300000000000000000000000000000000000000000000000000000000000f4240

Deployed Bytecode

0x608060405234801561000f575f5ffd5b5060043610610272575f3560e01c806379ba50971161014f578063a9059cbb116100c1578063d505accf11610085578063d505accf146106b5578063dd62ed3e146106d1578063e30c397814610701578063ecda10f51461071f578063f2fde38b1461073d578063f46008ae1461075957610272565b8063a9059cbb14610637578063aabf2d6014610667578063aca62e0014610671578063b874b67b1461067b578063c2db5b571461069957610272565b80638456cb59116101135780638456cb591461059357806384b0196e1461059d5780638a0dac4a146105c15780638da5cb5b146105dd578063928b9e90146105fb57806395d89b411461061957610272565b806379ba5097146104fc57806379cc6790146105065780637b103999146105225780637ecebe00146105405780637f4e48491461057057610272565b80633f4ba83a116101e857806349e1783f116101ac57806349e1783f1461044e5780635146034a1461046a5780635c975abb146104885780636c785891146104a657806370a08231146104c2578063715018a6146104f257610272565b80633f4ba83a146103d057806340c10f19146103da57806341da2980146103f657806342966c6814610414578063452a93201461043057610272565b80632799657d1161023a5780632799657d146103305780632dc054521461034e5780632e55d0f214610358578063313ce5671461037657806332cb6b0c146103945780633644e515146103b257610272565b806306fdde03146102765780630935d2d214610294578063095ea7b3146102b257806318160ddd146102e257806323b872dd14610300575b5f5ffd5b61027e610777565b60405161028b9190613347565b60405180910390f35b61029c610807565b6040516102a9919061337f565b60405180910390f35b6102cc60048036038101906102c79190613420565b610889565b6040516102d99190613478565b60405180910390f35b6102ea6108ab565b6040516102f7919061337f565b60405180910390f35b61031a60048036038101906103159190613491565b6108b4565b6040516103279190613478565b60405180910390f35b6103386108e2565b604051610345919061337f565b60405180910390f35b6103566108e9565b005b610360610b33565b60405161036d919061337f565b60405180910390f35b61037e610b39565b60405161038b91906134fc565b60405180910390f35b61039c610b41565b6040516103a9919061337f565b60405180910390f35b6103ba610b51565b6040516103c7919061352d565b60405180910390f35b6103d8610b5f565b005b6103f460048036038101906103ef9190613420565b610bc3565b005b6103fe610d8b565b60405161040b9190613555565b60405180910390f35b61042e6004803603810190610429919061356e565b610db0565b005b610438610dbc565b6040516104459190613555565b60405180910390f35b61046860048036038101906104639190613599565b610de1565b005b610472610efc565b60405161047f919061337f565b60405180910390f35b610490610f03565b60405161049d9190613478565b60405180910390f35b6104c060048036038101906104bb9190613420565b610f18565b005b6104dc60048036038101906104d79190613599565b61107f565b6040516104e9919061337f565b60405180910390f35b6104fa6110c4565b005b6105046110d7565b005b610520600480360381019061051b9190613420565b611165565b005b61052a611173565b6040516105379190613555565b60405180910390f35b61055a60048036038101906105559190613599565b611198565b604051610567919061337f565b60405180910390f35b6105786111a9565b60405161058a969594939291906135c4565b60405180910390f35b61059b6112e1565b005b6105a5611338565b6040516105b89796959493929190613714565b60405180910390f35b6105db60048036038101906105d69190613599565b6113dd565b005b6105e561150d565b6040516105f29190613555565b60405180910390f35b610603611535565b604051610610919061337f565b60405180910390f35b61062161153b565b60405161062e9190613347565b60405180910390f35b610651600480360381019061064c9190613420565b6115cb565b60405161065e9190613478565b60405180910390f35b61066f6115ed565b005b610679611788565b005b6106836118c1565b6040516106909190613478565b60405180910390f35b6106b360048036038101906106ae9190613599565b611926565b005b6106cf60048036038101906106ca91906137ea565b6119e1565b005b6106eb60048036038101906106e69190613887565b611b26565b6040516106f8919061337f565b60405180910390f35b610709611ba8565b6040516107169190613555565b60405180910390f35b610727611bd0565b604051610734919061337f565b60405180910390f35b61075760048036038101906107529190613599565b611bf4565b005b610761611ca0565b60405161076e919061337f565b60405180910390f35b606060038054610786906138f2565b80601f01602080910402602001604051908101604052809291908181526020018280546107b2906138f2565b80156107fd5780601f106107d4576101008083540402835291602001916107fd565b820191905f5260205f20905b8154815290600101906020018083116107e057829003601f168201915b5050505050905090565b5f5f73ffffffffffffffffffffffffffffffffffffffff16600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1603610864575f9050610886565b600e544210610875575f9050610886565b42600e54610883919061394f565b90505b90565b5f5f610893611cbc565b90506108a0818585611cc3565b600191505092915050565b5f600254905090565b5f5f6108be611cbc565b90506108cb858285611cd5565b6108d6858585611d68565b60019150509392505050565b62278d0081565b6108f1611e58565b5f73ffffffffffffffffffffffffffffffffffffffff16600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1603610977576040517fa3fef2f800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600e544210156109b3576040517f7d857b6700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6109dd600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16611edf565b5f600b5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16600b5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505f600d5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505f600e81905550600b5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f724c89272c35417e239c6cd89ada342e0717632938f38b47eaacecacf291ace242604051610b28919061337f565b60405180910390a350565b600f5481565b5f6012905090565b6b033b2e3c9fd0803ce800000081565b5f610b5a61235a565b905090565b610b67611e58565b5f600f5442610b76919061394f565b90505f600f81905550610b87612410565b7ff8c3ad369ecdb7fc19ae680f4b96c1308bfdcab369498d9320a8736bff96feb54282604051610bb8929190613982565b60405180910390a150565b600b5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614610c49576040517f87aa01c800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610cae576040517fe6c4247b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6b033b2e3c9fd0803ce800000081610cc46108ab565b610cce91906139a9565b1115610d06576040517fc30436e900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b610d0f81612471565b610d198282612579565b8173ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff167fea11a982fded92c9d2abb611c87cef478ee78bf72754ee71b05b941b4271872083610d716108ab565b604051610d7f929190613982565b60405180910390a35050565b600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b610db9816125f8565b50565b600c5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b610de9611e58565b600a60149054906101000a900460ff1615610e30576040517f07a554d900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b610e3981611edf565b80600b5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055506001600a60146101000a81548160ff0219169083151502179055508073ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff167f724c89272c35417e239c6cd89ada342e0717632938f38b47eaacecacf291ace242604051610ef1919061337f565b60405180910390a350565b62093a8081565b5f60055f9054906101000a900460ff16905090565b600b5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614610f9e576040517f87aa01c800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611003576040517fe6c4247b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61100d828261260c565b8173ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff167f6290ab9c6c3b68bd5883b4c8c5af8a3d0778d07d2d89b542aed1f701648dd250836110656108ab565b604051611073929190613982565b60405180910390a35050565b5f5f5f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6110cc611e58565b6110d55f61268b565b565b5f6110e0611cbc565b90508073ffffffffffffffffffffffffffffffffffffffff16611101611ba8565b73ffffffffffffffffffffffffffffffffffffffff161461115957806040517f118cdaa70000000000000000000000000000000000000000000000000000000081526004016111509190613555565b60405180910390fd5b6111628161268b565b50565b61116f82826126bb565b5050565b600b5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b5f6111a2826126db565b9050919050565b5f5f5f5f5f5f600b5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169550600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169450600c5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169250611223610f03565b91505f73ffffffffffffffffffffffffffffffffffffffff16600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16141580156112835750600e5442105b156112995742600e54611296919061394f565b93505b8180156112a757505f600f54115b156112d9575f62278d00600f546112be91906139a9565b9050804210156112d75742816112d4919061394f565b91505b505b909192939495565b6112e9611e58565b42600f819055506112f8612721565b7feea94b8a140053263411d3e6e3316b9c7324b6011febeb4d13c40762de03b651600f5462278d0060405161132e929190613982565b60405180910390a1565b5f6060805f5f5f6060611349612783565b6113516127be565b46305f5f1b5f67ffffffffffffffff8111156113705761136f6139dc565b5b60405190808252806020026020018201604052801561139e5781602001602082028036833780820191505090505b507f0f00000000000000000000000000000000000000000000000000000000000000959493929190965096509650965096509650965090919293949596565b6113e5611e58565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361144a576040517fe6c4247b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f600c5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905081600c5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f064d28d3d3071c5cbc271a261c10c2f0f0d9e319390397101aa0eb23c6bad90960405160405180910390a35050565b5f60095f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b600e5481565b60606004805461154a906138f2565b80601f0160208091040260200160405190810160405280929190818152602001828054611576906138f2565b80156115c15780601f10611598576101008083540402835291602001916115c1565b820191905f5260205f20905b8154815290600101906020018083116115a457829003601f168201915b5050505050905090565b5f5f6115d5611cbc565b90506115e2818585611d68565b600191505092915050565b6115f561150d565b73ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff161415801561167d5750600c5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614155b156116b4576040517fcae1d95600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690505f600d5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505f600e819055503373ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f5e92de2d7275824013139de061ae5baf26037306f7ce3277bfd652be323650404260405161177d919061337f565b60405180910390a350565b611790610f03565b6117cf576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016117c690613a53565b60405180910390fd5b5f600f5403611813576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161180a90613abb565b60405180910390fd5b62278d00600f5461182491906139a9565b4211611865576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161185c90613b23565b60405180910390fd5b5f600f5442611874919061394f565b90505f600f81905550611885612410565b7ff8c3ad369ecdb7fc19ae680f4b96c1308bfdcab369498d9320a8736bff96feb542826040516118b6929190613982565b60405180910390a150565b5f5f73ffffffffffffffffffffffffffffffffffffffff16600d5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16141580156119215750600e544210155b905090565b61192e611e58565b61193781611edf565b80600d5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555062093a804261198691906139a9565b600e819055508073ffffffffffffffffffffffffffffffffffffffff167f5e52fd8c1ec2db0a86771dcce58ebfc3d0778781415180efe892fbc9e2edc27f600e54426040516119d6929190613982565b60405180910390a250565b83421115611a2657836040517f62791302000000000000000000000000000000000000000000000000000000008152600401611a1d919061337f565b60405180910390fd5b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9888888611a548c6127f9565b89604051602001611a6a96959493929190613b41565b6040516020818303038152906040528051906020012090505f611a8c8261284c565b90505f611a9b82878787612865565b90508973ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614611b0f57808a6040517f4b800e46000000000000000000000000000000000000000000000000000000008152600401611b06929190613ba0565b60405180910390fd5b611b1a8a8a8a611cc3565b50505050505050505050565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b5f600a5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b7f0000000000000000000000000000000000000000000000000000000068f81a8f81565b611bfc611e58565b80600a5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508073ffffffffffffffffffffffffffffffffffffffff16611c5b61150d565b73ffffffffffffffffffffffffffffffffffffffff167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b60026b033b2e3c9fd0803ce8000000611cb99190613bf4565b81565b5f33905090565b611cd08383836001612893565b505050565b5f611ce08484611b26565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff811015611d625781811015611d53578281836040517ffb8f41b2000000000000000000000000000000000000000000000000000000008152600401611d4a93929190613c24565b60405180910390fd5b611d6184848484035f612893565b5b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611dd8575f6040517f96c6fd1e000000000000000000000000000000000000000000000000000000008152600401611dcf9190613555565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611e48575f6040517fec442f05000000000000000000000000000000000000000000000000000000008152600401611e3f9190613555565b60405180910390fd5b611e53838383612a62565b505050565b611e60611cbc565b73ffffffffffffffffffffffffffffffffffffffff16611e7e61150d565b73ffffffffffffffffffffffffffffffffffffffff1614611edd57611ea1611cbc565b6040517f118cdaa7000000000000000000000000000000000000000000000000000000008152600401611ed49190613555565b60405180910390fd5b565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603611f44576040517fe6c4247b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8173ffffffffffffffffffffffffffffffffffffffff163b03611f94576040517f09ee12d500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8073ffffffffffffffffffffffffffffffffffffffff166395eb82d56040518163ffffffff1660e01b8152600401602060405180830381865afa925050508015611ffc57506040513d601f19601f82011682018060405250810190611ff99190613c83565b60015b612032576040517f511a416100000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80612069576040517f11a1e69700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b508073ffffffffffffffffffffffffffffffffffffffff166354fd4d506040518163ffffffff1660e01b8152600401602060405180830381865afa9250505080156120d257506040513d601f19601f820116820180604052508101906120cf9190613cc2565b60015b612108576040517fa9146eeb00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8103612141576040517fa9146eeb00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b508073ffffffffffffffffffffffffffffffffffffffff1663bd9bfee36040518163ffffffff1660e01b8152600401602060405180830381865afa9250505080156121aa57506040513d601f19601f820116820180604052508101906121a79190613cc2565b60015b6121e0576040517f3857560200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b508073ffffffffffffffffffffffffffffffffffffffff1663fd7b96ce6040518163ffffffff1660e01b8152600401602060405180830381865afa92505050801561224957506040513d601f19601f820116820180604052508101906122469190613c83565b60015b61227f576040517fd74f9f2b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b508073ffffffffffffffffffffffffffffffffffffffff1663b187bd266040518163ffffffff1660e01b8152600401602060405180830381865afa9250505080156122e857506040513d601f19601f820116820180604052508101906122e59190613c83565b60015b61231e576040517f879d4bae00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8015612356576040517ff5e9253a00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5050565b5f7f0000000000000000000000003ef45583de0b95fadab94100d15067a2a36287ab73ffffffffffffffffffffffffffffffffffffffff163073ffffffffffffffffffffffffffffffffffffffff161480156123d557507f000000000000000000000000000000000000000000000000000000000000210546145b15612402577ffe88d80fe01df9059bd5c765a324e8cee4e0bba8ba54bf439e35d51ce9e7ecc6905061240d565b61240a612ad7565b90505b90565b612418612b6c565b5f60055f6101000a81548160ff0219169083151502179055507f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa61245a611cbc565b6040516124679190613555565b60405180910390a1565b600b5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663bd9bfee36040518163ffffffff1660e01b8152600401602060405180830381865afa9250505080156124fa57506040513d601f19601f820116820180604052508101906124f79190613cc2565b60015b612530576040517fd3f0a2ef00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8111801561253e57508082115b15612575576040517f20269ecc00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5050565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036125e9575f6040517fec442f050000000000000000000000000000000000000000000000000000000081526004016125e09190613555565b60405180910390fd5b6125f45f8383612a62565b5050565b612609612603611cbc565b8261260c565b50565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361267c575f6040517f96c6fd1e0000000000000000000000000000000000000000000000000000000081526004016126739190613555565b60405180910390fd5b612687825f83612a62565b5050565b600a5f6101000a81549073ffffffffffffffffffffffffffffffffffffffff02191690556126b881612bac565b50565b6126cd826126c7611cbc565b83611cd5565b6126d7828261260c565b5050565b5f60085f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b612729612c6f565b600160055f6101000a81548160ff0219169083151502179055507f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a25861276c611cbc565b6040516127799190613555565b60405180910390a1565b60606127b960067f4a554e4b00000000000000000000000000000000000000000000000000000004612cb090919063ffffffff16565b905090565b60606127f460077f3100000000000000000000000000000000000000000000000000000000000001612cb090919063ffffffff16565b905090565b5f60085f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f815480929190600101919050559050919050565b5f61285e61285861235a565b83612d5d565b9050919050565b5f5f5f5f61287588888888612d9d565b9250925092506128858282612e84565b829350505050949350505050565b5f73ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff1603612903575f6040517fe602df050000000000000000000000000000000000000000000000000000000081526004016128fa9190613555565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603612973575f6040517f94280d6200000000000000000000000000000000000000000000000000000000815260040161296a9190613555565b60405180910390fd5b8160015f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508015612a5c578273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051612a53919061337f565b60405180910390a35b50505050565b612a6a610f03565b8015612a7757505f600f54115b15612ac75762278d00600f54612a8d91906139a9565b421115612ac6576040517f81c1171900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5b612ad2838383612fe6565b505050565b5f7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7fcc1e8eb8c31af2a47678f4e5b8182887bbd2d2725763d9d3c603d5f526487fd27fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc64630604051602001612b51959493929190613ced565b60405160208183030381529060405280519060200120905090565b612b74610f03565b612baa576040517f8dfc202b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f60095f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160095f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b612c77610f03565b15612cae576040517fd93c066500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b606060ff5f1b8314612ccc57612cc583612ffe565b9050612d57565b818054612cd8906138f2565b80601f0160208091040260200160405190810160405280929190818152602001828054612d04906138f2565b8015612d4f5780601f10612d2657610100808354040283529160200191612d4f565b820191905f5260205f20905b815481529060010190602001808311612d3257829003601f168201915b505050505090505b92915050565b5f6040517f190100000000000000000000000000000000000000000000000000000000000081528360028201528260228201526042812091505092915050565b5f5f5f7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0845f1c1115612dd9575f600385925092509250612e7a565b5f6001888888886040515f8152602001604052604051612dfc9493929190613d3e565b6020604051602081039080840390855afa158015612e1c573d5f5f3e3d5ffd5b5050506020604051035190505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603612e6d575f60015f5f1b93509350935050612e7a565b805f5f5f1b935093509350505b9450945094915050565b5f6003811115612e9757612e96613d81565b5b826003811115612eaa57612ea9613d81565b5b0315612fe25760016003811115612ec457612ec3613d81565b5b826003811115612ed757612ed6613d81565b5b03612f0e576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60026003811115612f2257612f21613d81565b5b826003811115612f3557612f34613d81565b5b03612f7957805f1c6040517ffce698f7000000000000000000000000000000000000000000000000000000008152600401612f70919061337f565b60405180910390fd5b600380811115612f8c57612f8b613d81565b5b826003811115612f9f57612f9e613d81565b5b03612fe157806040517fd78bce0c000000000000000000000000000000000000000000000000000000008152600401612fd8919061352d565b60405180910390fd5b5b5050565b612fee612c6f565b612ff9838383613070565b505050565b60605f61300a83613289565b90505f602067ffffffffffffffff811115613028576130276139dc565b5b6040519080825280601f01601f19166020018201604052801561305a5781602001600182028036833780820191505090505b5090508181528360208201528092505050919050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036130c0578060025f8282546130b491906139a9565b9250508190555061318e565b5f5f5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015613149578381836040517fe450d38c00000000000000000000000000000000000000000000000000000000815260040161314093929190613c24565b60405180910390fd5b8181035f5f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550505b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036131d5578060025f828254039250508190555061321f565b805f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055505b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161327c919061337f565b60405180910390a3505050565b5f5f60ff835f1c169050601f8111156132ce576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80915050919050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f613319826132d7565b61332381856132e1565b93506133338185602086016132f1565b61333c816132ff565b840191505092915050565b5f6020820190508181035f83015261335f818461330f565b905092915050565b5f819050919050565b61337981613367565b82525050565b5f6020820190506133925f830184613370565b92915050565b5f5ffd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6133c58261339c565b9050919050565b6133d5816133bb565b81146133df575f5ffd5b50565b5f813590506133f0816133cc565b92915050565b6133ff81613367565b8114613409575f5ffd5b50565b5f8135905061341a816133f6565b92915050565b5f5f6040838503121561343657613435613398565b5b5f613443858286016133e2565b92505060206134548582860161340c565b9150509250929050565b5f8115159050919050565b6134728161345e565b82525050565b5f60208201905061348b5f830184613469565b92915050565b5f5f5f606084860312156134a8576134a7613398565b5b5f6134b5868287016133e2565b93505060206134c6868287016133e2565b92505060406134d78682870161340c565b9150509250925092565b5f60ff82169050919050565b6134f6816134e1565b82525050565b5f60208201905061350f5f8301846134ed565b92915050565b5f819050919050565b61352781613515565b82525050565b5f6020820190506135405f83018461351e565b92915050565b61354f816133bb565b82525050565b5f6020820190506135685f830184613546565b92915050565b5f6020828403121561358357613582613398565b5b5f6135908482850161340c565b91505092915050565b5f602082840312156135ae576135ad613398565b5b5f6135bb848285016133e2565b91505092915050565b5f60c0820190506135d75f830189613546565b6135e46020830188613546565b6135f16040830187613370565b6135fe6060830186613546565b61360b6080830185613469565b61361860a0830184613370565b979650505050505050565b5f7fff0000000000000000000000000000000000000000000000000000000000000082169050919050565b61365781613623565b82525050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b61368f81613367565b82525050565b5f6136a08383613686565b60208301905092915050565b5f602082019050919050565b5f6136c28261365d565b6136cc8185613667565b93506136d783613677565b805f5b838110156137075781516136ee8882613695565b97506136f9836136ac565b9250506001810190506136da565b5085935050505092915050565b5f60e0820190506137275f83018a61364e565b8181036020830152613739818961330f565b9050818103604083015261374d818861330f565b905061375c6060830187613370565b6137696080830186613546565b61377660a083018561351e565b81810360c083015261378881846136b8565b905098975050505050505050565b61379f816134e1565b81146137a9575f5ffd5b50565b5f813590506137ba81613796565b92915050565b6137c981613515565b81146137d3575f5ffd5b50565b5f813590506137e4816137c0565b92915050565b5f5f5f5f5f5f5f60e0888a03121561380557613804613398565b5b5f6138128a828b016133e2565b97505060206138238a828b016133e2565b96505060406138348a828b0161340c565b95505060606138458a828b0161340c565b94505060806138568a828b016137ac565b93505060a06138678a828b016137d6565b92505060c06138788a828b016137d6565b91505092959891949750929550565b5f5f6040838503121561389d5761389c613398565b5b5f6138aa858286016133e2565b92505060206138bb858286016133e2565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f600282049050600182168061390957607f821691505b60208210810361391c5761391b6138c5565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61395982613367565b915061396483613367565b925082820390508181111561397c5761397b613922565b5b92915050565b5f6040820190506139955f830185613370565b6139a26020830184613370565b9392505050565b5f6139b382613367565b91506139be83613367565b92508282019050808211156139d6576139d5613922565b5b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f4e6f7420706175736564000000000000000000000000000000000000000000005f82015250565b5f613a3d600a836132e1565b9150613a4882613a09565b602082019050919050565b5f6020820190508181035f830152613a6a81613a31565b9050919050565b7f496e76616c6964207061757365207374617465000000000000000000000000005f82015250565b5f613aa56013836132e1565b9150613ab082613a71565b602082019050919050565b5f6020820190508181035f830152613ad281613a99565b9050919050565b7f5061757365206475726174696f6e206e6f7420657863656564656400000000005f82015250565b5f613b0d601b836132e1565b9150613b1882613ad9565b602082019050919050565b5f6020820190508181035f830152613b3a81613b01565b9050919050565b5f60c082019050613b545f83018961351e565b613b616020830188613546565b613b6e6040830187613546565b613b7b6060830186613370565b613b886080830185613370565b613b9560a0830184613370565b979650505050505050565b5f604082019050613bb35f830185613546565b613bc06020830184613546565b9392505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f613bfe82613367565b9150613c0983613367565b925082613c1957613c18613bc7565b5b828204905092915050565b5f606082019050613c375f830186613546565b613c446020830185613370565b613c516040830184613370565b949350505050565b613c628161345e565b8114613c6c575f5ffd5b50565b5f81519050613c7d81613c59565b92915050565b5f60208284031215613c9857613c97613398565b5b5f613ca584828501613c6f565b91505092915050565b5f81519050613cbc816133f6565b92915050565b5f60208284031215613cd757613cd6613398565b5b5f613ce484828501613cae565b91505092915050565b5f60a082019050613d005f83018861351e565b613d0d602083018761351e565b613d1a604083018661351e565b613d276060830185613370565b613d346080830184613546565b9695505050505050565b5f608082019050613d515f83018761351e565b613d5e60208301866134ed565b613d6b604083018561351e565b613d78606083018461351e565b95945050505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffdfea2646970667358221220eca864677af4a5475fc801a4f28cea70f078ade365e0bad0b0d26f05b64ffb6164736f6c634300081b0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000000000000000000000000000000000000000f4240

-----Decoded View---------------
Arg [0] : initialAllocation (uint256): 1000000

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 00000000000000000000000000000000000000000000000000000000000f4240


Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.