ETH Price: $2,850.56 (-3.00%)
 

Overview

Max Total Supply

1,000,000,000 BTC

Holders

6

Transfers

-
0

Market

Price

$0.00 @ 0.000000 ETH

Onchain Market Cap

-

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0x06831980...3CE909962
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
Token

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion
File 1 of 39 : Counter.sol
// SPDX-License-Identifier: NOLICENSE
pragma solidity ^0.8.24;

import {BaseHook} from "v4-periphery/src/base/hooks/BaseHook.sol";
import {StateLibrary} from "v4-core/src/libraries/StateLibrary.sol";
import {Hooks} from "v4-core/src/libraries/Hooks.sol";
import {IHooks} from "v4-core/src/interfaces/IHooks.sol";
import {IPoolManager} from "v4-core/src/interfaces/IPoolManager.sol";
import {PoolKey} from "v4-core/src/types/PoolKey.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {Currency} from "v4-core/src/types/Currency.sol";
import {PoolId, PoolIdLibrary} from "v4-core/src/types/PoolId.sol";
import {TickMath} from "v4-core/src/libraries/TickMath.sol";
import {BalanceDelta} from "v4-core/src/types/BalanceDelta.sol";
import {BeforeSwapDelta, BeforeSwapDeltaLibrary} from "v4-core/src/types/BeforeSwapDelta.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import {IERC721Receiver} from "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol";

interface ILpLocker {
    function collectFees(address token) external;
}

interface IAllowanceTransfer {
    function approve(address token, address spender, uint160 amount, uint48 expiration) external;
}

interface IWETH {
    function withdraw(uint) external;
    function deposit() payable external;
    function balanceOf(address) external view returns(uint);
}

interface IV4Router {
    function execute(bytes calldata commands, bytes[] calldata inputs) external payable;

    struct ExactInputSingleParams {
        PoolKey poolKey;
        bool zeroForOne;
        uint128 amountIn;
        uint128 amountOutMinimum;
        bytes hookData;
    }
}

interface IHookGateway {
    function afterSwap(
        address sender,
        PoolKey calldata key,
        IPoolManager.SwapParams calldata params,
        BalanceDelta delta,
        bytes calldata hookData
    ) external;
}

interface INonfungiblePositionManager is IERC721 {
    struct CollectParams {
        uint256 tokenId;
        address recipient;
        uint128 amount0Max;
        uint128 amount1Max;
    }

    function collect(
        CollectParams calldata params
    ) external payable returns (uint256 amount0, uint256 amount1);

    function modifyLiquidities(bytes calldata unlockData, uint256 deadline) external payable;
    function initializePool(PoolKey calldata key, uint160 sqrtPriceX96) external payable returns (int24);
    function nextTokenId() external view returns (uint256);
    function multicall(bytes[] calldata data) external payable returns (bytes[] calldata);
}

/// @notice Library for converting between addresses and bytes32 values.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Bytes32AddressLib.sol)
library Bytes32AddressLib {
    function fromLast20Bytes(
        bytes32 bytesValue
    ) internal pure returns (address) {
        return address(uint160(uint256(bytesValue)));
    }

    function fillLast12Bytes(
        address addressValue
    ) internal pure returns (bytes32) {
        return bytes32(bytes20(addressValue));
    }
}

struct ApeSwapParams {
    address tokenIn;
    address tokenOut;
    uint24 fee;
    address recipient;
    uint256 amountIn;
    uint256 amountOutMinimum;
    uint160 sqrtPriceLimitX96;
}


struct DeployParams {
    string name;
    string symbol;
    int24 initialTick;
    uint24 fee;
}

contract Token is ERC20 {
    constructor(
        string memory name_,
        string memory symbol_,
        uint256 maxSupply_
    ) ERC20(name_, symbol_) {
        _mint(msg.sender, maxSupply_);
    }

    function decimals() public view virtual override returns (uint8) {
        return 18;
    }
}

contract Gateway is BaseHook, Ownable, IERC721Receiver, ILpLocker {
    using PoolIdLibrary for PoolKey;
    using StateLibrary for IPoolManager;
    using TickMath for int24;
    using Bytes32AddressLib for bytes32;

	address private gateway;
    address private weth;
    address private permit2;
    address private swapRouter;
    address private positionManager;

    uint256 private _totalSupply;
    mapping (uint256 => address) private _idNonce;
    mapping (address => bool) private _authorizedSigners;
    bool private _inHook;
    bool private _hookEnabled;
    bool private _collectFeesOnSwaps;

    address payable public feeRecipient;
    uint256 public triggerFrequency = 1;
    uint8 public lpFeesCut = 50;
    uint256 public taxPercentage = 10;
 
    mapping (address => uint256) public triggers;
    mapping (address => ApeToken) public tokens;

    struct ApeToken {
        uint256 tokenId;
        address payable creator;
    }

    event Trigger(
        address indexed token,
        address indexed sender,
        bool redirected,
        bool result
    );

    event CreateToken(PoolKey indexed key, uint256 indexed id, address token);

    constructor(IPoolManager _poolManager) BaseHook(_poolManager) Ownable(0x7D3E497a85019195DBa39Ed1CA31Dde254fcb8B0) {
        if (block.chainid == 8453) {
            weth = 0x4200000000000000000000000000000000000006;
            permit2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
            swapRouter = 0x6fF5693b99212Da76ad316178A184AB56D299b43;
            positionManager = 0x7C5f5A4bBd8fD63184577525326123B519429bDc;
        }

        _totalSupply = 1_000_000_000 * 10 ** 18;
        feeRecipient = payable(0xd52b1994E745c0eE5Bc7AD41414Da7d9E0815b66);
        _authorizedSigners[0x09B93De27C54C29152F27edDbE763479383a1A93] = true;
    }

    receive() external payable virtual {}

    function onERC721Received(address, address, uint256, bytes calldata) external override returns (bytes4) {
        return IERC721Receiver.onERC721Received.selector;
    }

    function initializeToken(address tokenAddress, address creator, uint256 tokenId) private {
        require(tokens[tokenAddress].tokenId == 0, "Token already initialized");       
        tokens[tokenAddress].tokenId = tokenId;
        tokens[tokenAddress].creator = payable(creator);
    }

    function collectFees(address tokenAddress) public {
        if (tokens[tokenAddress].tokenId == 0) {
            return;
        }

        INonfungiblePositionManager posm = INonfungiblePositionManager(positionManager);
        bytes memory actions = abi.encodePacked(uint8(0x01), uint8(0x11));
        bytes[] memory params = new bytes[](2);
        params[0] = abi.encode(tokens[tokenAddress].tokenId , 0, 0, 0, "");
        params[1] = abi.encode(tokenAddress, weth, address(this));
        uint256 deadline = block.timestamp + 60;

        try posm.modifyLiquidities{value: 0}(
            abi.encode(actions, params),
            deadline
        ) {
            emit Trigger(tokenAddress, msg.sender, false, true);
        } catch {
            emit Trigger(tokenAddress, msg.sender, false, false);
            return;
        }

        IERC20 token = IERC20(tokenAddress);
        uint256 tokenBalance = token.balanceOf(address(this));

        if (tokenBalance > 0) {
            PoolKey memory key = PoolKey({
                currency0: Currency.wrap(tokenAddress),
                currency1: Currency.wrap(weth),
                fee: 10000,
                tickSpacing: 200,
                hooks: IHooks(address(this))
            });

            bytes memory commands = abi.encodePacked(uint8(0x10));
            bytes[] memory inputs = new bytes[](1);

            // Encode V4Router actions
            bytes memory swapActions = abi.encodePacked(
                uint8(0x06),
                uint8(0x0c),
                uint8(0x0f)
            );

            token.approve(address(permit2), type(uint256).max);
            IAllowanceTransfer(address(permit2)).approve(tokenAddress, address(swapRouter), type(uint160).max, type(uint48).max);

            // Prepare parameters for each action
            bytes[] memory swapParams = new bytes[](3);
            swapParams[0] = abi.encode(
                IV4Router.ExactInputSingleParams({
                    poolKey: key,
                    zeroForOne: true,
                    amountIn: uint128(tokenBalance),
                    amountOutMinimum: 0,
                    hookData: ""
                })
            );
            swapParams[1] = abi.encode(key.currency0, uint128(tokenBalance));
            swapParams[2] = abi.encode(key.currency1, 0);

            // Combine actions and params into inputs
            inputs[0] = abi.encode(swapActions, swapParams);

            // Execute the swap
            IV4Router(swapRouter).execute(commands, inputs);
        }

        IWETH w = IWETH(weth);
        w.withdraw(w.balanceOf(address(this)));

        payable(tokens[tokenAddress].creator).transfer(address(this).balance / 2);
        payable(feeRecipient).transfer(address(this).balance);
    }

    function getHookPermissions() public pure override returns (Hooks.Permissions memory) {
        return Hooks.Permissions({
            beforeInitialize: false,
            afterInitialize: false,
            beforeAddLiquidity: false,
            afterAddLiquidity: false,
            beforeRemoveLiquidity: false,
            afterRemoveLiquidity: false,
            beforeSwap: false,
            afterSwap: true,
            beforeDonate: false,
            afterDonate: false,
            beforeSwapReturnDelta: false,
            afterSwapReturnDelta: false,
            afterAddLiquidityReturnDelta: false,
            afterRemoveLiquidityReturnDelta: false
        });
    }

    function afterSwap(address sender, PoolKey calldata key, IPoolManager.SwapParams calldata params, BalanceDelta delta, bytes calldata hookData) external override returns (bytes4, int128)
    {
        if (!_inHook && _hookEnabled) {
            _inHook = true;
            if (gateway == address(0)) {
                collectFees(Currency.unwrap(key.currency0));
            } else {
                try IHookGateway(gateway).afterSwap(sender, key, params, delta, hookData) {
                    emit Trigger(Currency.unwrap(key.currency0), sender, true, true);
                } catch {
                    emit Trigger(Currency.unwrap(key.currency0), sender, true, false);
                }
            }
            _inHook = false;
        }
        return (BaseHook.afterSwap.selector, 0);
    }

    function getPoolState(address token) external view returns (
        uint160 sqrtPriceX96,
        int24 tick,
        uint24 protocolFee,
        uint24 lpFee
    ) {
        return poolManager.getSlot0(PoolKey({
            currency0: Currency.wrap(token),
            currency1: Currency.wrap(weth),
            fee: 10000,
            tickSpacing: 200,
            hooks: IHooks(0x9f37e2401F6ec18246de8ae57B91DEAA4F1ac040)
        }).toId());
    }


    // Create & Buy

    
    function deployToken(
        uint256 id, 
        DeployParams calldata _token,
        bytes calldata signature
    ) external payable returns (Token token) {

        require(_idNonce[id] == address(0), "ApeStore: TOKEN_EXISTS");

        bytes32 hashChallenge = _hashPrefixed(keccak256(abi.encodePacked(id, block.chainid, address(this), msg.sender, _token.name, _token.symbol)));
        address signer = _recoverSigner(hashChallenge, signature);

        require(_authorizedSigners[signer], "ApeStore: INVALID_SIGNER");
        require(_token.initialTick % 200 == 0, "Invalid tick");

       (bytes32 salt,) = generateSalt(msg.sender, _token.name, _token.symbol, _totalSupply);

        token = new Token{salt: keccak256(abi.encode(msg.sender, salt))}(
            _token.name,
            _token.symbol,
            _totalSupply
        );
        require(address(token) < weth, "Invalid salt");

        _idNonce[id] = address(token);
        uint160 sqrtPriceX96 = _token.initialTick.getSqrtPriceAtTick();

        PoolKey memory pool = PoolKey({
            currency0: Currency.wrap(address(token)),
            currency1: Currency.wrap(weth),
            fee: 10000,
            tickSpacing: 200,
            hooks: IHooks(address(this))
        });

        INonfungiblePositionManager posm = INonfungiblePositionManager(positionManager);
        bytes[] memory params = new bytes[](2);
        params[0] = abi.encodeWithSelector(
            posm.initializePool.selector,
            pool,
            sqrtPriceX96
        );

        bytes memory actions = abi.encodePacked(uint8(0x02), uint8(0x0d));
        bytes[] memory mintParams = new bytes[](2);
        mintParams[0] = abi.encode(pool, _token.initialTick, maxUsableTick(200), 30_100_000_000_000_000_000_000, _totalSupply, 0, address(this), "");
        mintParams[1] = abi.encode(pool.currency0, pool.currency1);

        uint256 deadline = block.timestamp + 60;
        params[1] = abi.encodeWithSelector(
           posm.modifyLiquidities.selector, abi.encode(actions, mintParams), deadline
        );

        IERC20(token).approve(address(permit2), type(uint256).max);
        IAllowanceTransfer(address(permit2)).approve(address(token), positionManager, type(uint160).max, type(uint48).max);

        uint256 tokenId = posm.nextTokenId();
        posm.multicall(params);
        initializeToken(address(token), msg.sender, tokenId);

        if (token.balanceOf(address(this)) > 0) {
            token.transfer(0x000000000000000000000000000000000000dEaD, token.balanceOf(address(this)));
        }

        if (msg.value > 0) {
            swapExactInputSingle(pool, msg.value); 
        }
  
        emit CreateToken(pool, id, address(token));
    }

    function swapExactInputSingle(
            PoolKey memory key,
            uint256 amountIn
        ) private returns (uint256 amountOut) {
        // Encode the Universal Router command
        
        bytes memory commands = abi.encodePacked(uint8(0x10));
        bytes[] memory inputs = new bytes[](1);

        // Encode V4Router actions
        bytes memory actions = abi.encodePacked(
            uint8(0x06),
            uint8(0x0c),
            uint8(0x0f)
        );

        IWETH(weth).deposit{ value: amountIn }();
        IERC20(weth).approve(address(permit2), type(uint256).max);
        IAllowanceTransfer(address(permit2)).approve(address(weth), address(swapRouter), type(uint160).max, type(uint48).max);

        // Prepare parameters for each action
        bytes[] memory params = new bytes[](3);
        params[0] = abi.encode(
            IV4Router.ExactInputSingleParams({
                poolKey: key,
                zeroForOne: false,
                amountIn: uint128(amountIn),
                amountOutMinimum: 0,
                hookData: ""
            })
        );
        params[1] = abi.encode(key.currency1, uint128(amountIn));
        params[2] = abi.encode(key.currency0, 0);

        // Combine actions and params into inputs
        inputs[0] = abi.encode(actions, params);

        // Execute the swap
        IV4Router(swapRouter).execute(commands, inputs);

        // Verify and return the output amount
        amountOut = IERC20(Currency.unwrap(key.currency0)).balanceOf(address(this));
        IERC20(Currency.unwrap(key.currency0)).transfer(msg.sender, amountOut);
        //require(amountOut >= minAmountOut, "Insufficient output amount");
        return amountOut;
    }
    
    function exactEthInputSingle(ApeSwapParams calldata params) external payable returns (uint256 amountOut) {
        require(msg.value >= params.amountIn, "INSUFFICIENT_INPUT_AMOUNT");
        (uint256 newEthAmount, uint256 newTokenAmount) = takeFee(params.amountIn, params.amountOutMinimum);

        PoolKey memory key = PoolKey({
            currency0: Currency.wrap(address(params.tokenOut)),
            currency1: Currency.wrap(weth),
            fee: 10000,
            tickSpacing: 200,
            hooks: IHooks(address(this))
        });

        bytes memory commands = abi.encodePacked(uint8(0x10));
        bytes[] memory inputs = new bytes[](1);

        // Encode V4Router actions
        bytes memory actions = abi.encodePacked(
            uint8(0x06),
            uint8(0x0c),
            uint8(0x0f)
        );

        IWETH(weth).deposit{ value: newEthAmount }();
        IERC20(weth).approve(address(permit2), type(uint256).max);
        IAllowanceTransfer(address(permit2)).approve(address(weth), address(swapRouter), type(uint160).max, type(uint48).max);

        // Prepare parameters for each action
        bytes[] memory swapParams = new bytes[](3);
        swapParams[0] = abi.encode(
            IV4Router.ExactInputSingleParams({
                poolKey: key,
                zeroForOne: false,
                amountIn: uint128(newEthAmount),
                amountOutMinimum: 0,
                hookData: ""
            })
        );
        swapParams[1] = abi.encode(key.currency1, uint128(newEthAmount));
        swapParams[2] = abi.encode(key.currency0, newTokenAmount);

        // Combine actions and params into inputs
        inputs[0] = abi.encode(actions, swapParams);

        // Execute the swap
        IV4Router(swapRouter).execute(commands, inputs);

        // Verify and return the output amount
        amountOut = IERC20(Currency.unwrap(key.currency0)).balanceOf(address(this));
        IERC20(Currency.unwrap(key.currency0)).transfer(msg.sender, amountOut);
        distribute();

        if (_collectFeesOnSwaps) {
            collectFees(address(params.tokenOut));
        }

        return amountOut;
    }

    function exactTokenInputSingle(ApeSwapParams calldata params) external payable returns (uint256 amountOut) {
        IERC20 token = IERC20(params.tokenIn);
        uint256 tokensBefore = token.balanceOf(address(this));
        token.transferFrom(msg.sender, address(this), params.amountIn);
        uint256 tokensAfter = token.balanceOf(address(this));
        uint256 newTokenAmount = tokensAfter - tokensBefore;
        //TODO token.approve(address(_v3router), newTokenAmount);

        PoolKey memory key = PoolKey({
            currency0: Currency.wrap(address(params.tokenIn)),
            currency1: Currency.wrap(weth),
            fee: 10000,
            tickSpacing: 200,
            hooks: IHooks(address(this))
        });

        bytes memory commands = abi.encodePacked(uint8(0x10));
        bytes[] memory inputs = new bytes[](1);

        // Encode V4Router actions
        bytes memory actions = abi.encodePacked(
            uint8(0x06),
            uint8(0x0c),
            uint8(0x0f)
        );

        token.approve(address(permit2), type(uint256).max);
        IAllowanceTransfer(address(permit2)).approve(params.tokenIn, address(swapRouter), type(uint160).max, type(uint48).max);

        // Prepare parameters for each action
        bytes[] memory swapParams = new bytes[](3);
        swapParams[0] = abi.encode(
            IV4Router.ExactInputSingleParams({
                poolKey: key,
                zeroForOne: true,
                amountIn: uint128(newTokenAmount),
                amountOutMinimum: 0,
                hookData: ""
            })
        );
        swapParams[1] = abi.encode(key.currency0, uint128(newTokenAmount));
        swapParams[2] = abi.encode(key.currency1, 0);

        // Combine actions and params into inputs
        inputs[0] = abi.encode(actions, swapParams);
        IWETH w = IWETH(weth);
        
        // Execute the swap
        uint256 balanceBefore = w.balanceOf(address(this));
        IV4Router(swapRouter).execute(commands, inputs);
        uint256 balanceAfter = w.balanceOf(address(this));
        uint256 ethReceived = balanceAfter - balanceBefore;
        w.withdraw(ethReceived);
        (uint256 newEthAmount,) = takeFee(ethReceived, 0);
        payable(params.recipient).transfer(newEthAmount);

        distribute();
        if (_collectFeesOnSwaps) {
            collectFees(address(token));
        }

        return newEthAmount;
    }

    function takeFee(uint256 ethAmount, uint256 tokenAmount) private view returns(uint256 newEthAmount, uint256 newTokenAmount)  {
        uint256 taxAmount = ethAmount * taxPercentage / 1000;
        newTokenAmount = tokenAmount - (tokenAmount * taxPercentage / 1000);
        newEthAmount = ethAmount - taxAmount;
    }

    function distribute() private {
        feeRecipient.transfer(address(this).balance);
    }

    function predictToken(
        address deployer,
        string calldata name,
        string calldata symbol,
        uint256 supply,
        bytes32 salt
    ) public view returns (address) {
        bytes32 create2Salt = keccak256(abi.encode(deployer, salt));
        return
            keccak256(
                abi.encodePacked(
                    bytes1(0xFF),
                    address(this),
                    create2Salt,
                    keccak256(
                        abi.encodePacked(
                            type(Token).creationCode,
                            abi.encode(name, symbol, supply)
                        )
                    )
                )
            ).fromLast20Bytes();
    }

    function generateSalt(
        address deployer,
        string calldata name,
        string calldata symbol,
        uint256 supply
    ) internal view returns (bytes32 salt, address token) {
        for (uint256 i; ; i++) {
            salt = bytes32(i);
            token = predictToken(deployer, name, symbol, supply, salt);
            if (token < weth && token.code.length == 0) {
                break;
            }
        }
    }

    // Admin only

    function setGateway(address newGateway) external onlyOwner
	{
		gateway = newGateway;
	}

    function setHookEnabled(bool on) external onlyOwner
	{
		_hookEnabled = on;
	}

    function setFeeRecipient(address who) external onlyOwner {
        feeRecipient = payable(who);
    }
    
    function setCollectFeesOnSwap(bool on) external onlyOwner {
        _collectFeesOnSwaps = on;
    }  

    function setTriggerFrequency(uint256 _triggerFrequency) public onlyOwner {
        triggerFrequency = _triggerFrequency;
    }

    function removeNative() external onlyOwner {
        uint256 balance = address(this).balance;
        payable(owner()).transfer(balance);
    }

    function transferTokens(address tokenAddress) external onlyOwner returns(bool){
        IERC20 token = IERC20(tokenAddress);
        uint256 balance = token.balanceOf(address(this));
        return token.transfer(owner(), balance);
    }

}


/// @notice Given a tickSpacing, compute the maximum usable tick
function maxUsableTick(int24 tickSpacing) pure returns (int24) {
    unchecked {
        return (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
    }
    
}

function _recoverSigner(bytes32 message, bytes memory sig) pure returns (address)
{
    (uint8 v, bytes32 r, bytes32 s) = _splitSignature(sig);
    return ecrecover(message, v, r, s);
}

function _hashPrefixed(bytes32 message) pure returns (bytes32)
{
    string memory prefix = "\x19Ethereum Signed Message:\n32";
    return keccak256(abi.encodePacked(prefix, message));
}

function _splitSignature(bytes memory sig) pure returns (uint8 v, bytes32 r, bytes32 s)
{
    require(sig.length == 65);
    assembly {
        r := mload(add(sig, 32))
        s := mload(add(sig, 64))
        v := byte(0, mload(add(sig, 96)))
    }
    return (v, r, s);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {Hooks} from "@uniswap/v4-core/src/libraries/Hooks.sol";
import {IPoolManager} from "@uniswap/v4-core/src/interfaces/IPoolManager.sol";
import {IHooks} from "@uniswap/v4-core/src/interfaces/IHooks.sol";
import {BalanceDelta} from "@uniswap/v4-core/src/types/BalanceDelta.sol";
import {PoolKey} from "@uniswap/v4-core/src/types/PoolKey.sol";
import {BeforeSwapDelta} from "@uniswap/v4-core/src/types/BeforeSwapDelta.sol";
import {SafeCallback} from "../SafeCallback.sol";

/// @title Base Hook
/// @notice abstract contract for hook implementations
abstract contract BaseHook is IHooks, SafeCallback {
    error NotSelf();
    error InvalidPool();
    error LockFailure();
    error HookNotImplemented();

    constructor(IPoolManager _manager) SafeCallback(_manager) {
        validateHookAddress(this);
    }

    /// @dev Only this address may call this function
    modifier selfOnly() {
        if (msg.sender != address(this)) revert NotSelf();
        _;
    }

    /// @dev Only pools with hooks set to this contract may call this function
    modifier onlyValidPools(IHooks hooks) {
        if (hooks != this) revert InvalidPool();
        _;
    }

    /// @notice Returns a struct of permissions to signal which hook functions are to be implemented
    /// @dev Used at deployment to validate the address correctly represents the expected permissions
    function getHookPermissions() public pure virtual returns (Hooks.Permissions memory);

    /// @notice Validates the deployed hook address agrees with the expected permissions of the hook
    /// @dev this function is virtual so that we can override it during testing,
    /// which allows us to deploy an implementation to any address
    /// and then etch the bytecode into the correct address
    function validateHookAddress(BaseHook _this) internal pure virtual {
        Hooks.validateHookPermissions(_this, getHookPermissions());
    }

    function _unlockCallback(bytes calldata data) internal virtual override returns (bytes memory) {
        (bool success, bytes memory returnData) = address(this).call(data);
        if (success) return returnData;
        if (returnData.length == 0) revert LockFailure();
        // if the call failed, bubble up the reason
        assembly ("memory-safe") {
            revert(add(returnData, 32), mload(returnData))
        }
    }

    /// @inheritdoc IHooks
    function beforeInitialize(address, PoolKey calldata, uint160) external virtual returns (bytes4) {
        revert HookNotImplemented();
    }

    /// @inheritdoc IHooks
    function afterInitialize(address, PoolKey calldata, uint160, int24) external virtual returns (bytes4) {
        revert HookNotImplemented();
    }

    /// @inheritdoc IHooks
    function beforeAddLiquidity(address, PoolKey calldata, IPoolManager.ModifyLiquidityParams calldata, bytes calldata)
        external
        virtual
        returns (bytes4)
    {
        revert HookNotImplemented();
    }

    /// @inheritdoc IHooks
    function beforeRemoveLiquidity(
        address,
        PoolKey calldata,
        IPoolManager.ModifyLiquidityParams calldata,
        bytes calldata
    ) external virtual returns (bytes4) {
        revert HookNotImplemented();
    }

    /// @inheritdoc IHooks
    function afterAddLiquidity(
        address,
        PoolKey calldata,
        IPoolManager.ModifyLiquidityParams calldata,
        BalanceDelta,
        BalanceDelta,
        bytes calldata
    ) external virtual returns (bytes4, BalanceDelta) {
        revert HookNotImplemented();
    }

    /// @inheritdoc IHooks
    function afterRemoveLiquidity(
        address,
        PoolKey calldata,
        IPoolManager.ModifyLiquidityParams calldata,
        BalanceDelta,
        BalanceDelta,
        bytes calldata
    ) external virtual returns (bytes4, BalanceDelta) {
        revert HookNotImplemented();
    }

    /// @inheritdoc IHooks
    function beforeSwap(address, PoolKey calldata, IPoolManager.SwapParams calldata, bytes calldata)
        external
        virtual
        returns (bytes4, BeforeSwapDelta, uint24)
    {
        revert HookNotImplemented();
    }

    /// @inheritdoc IHooks
    function afterSwap(address, PoolKey calldata, IPoolManager.SwapParams calldata, BalanceDelta, bytes calldata)
        external
        virtual
        returns (bytes4, int128)
    {
        revert HookNotImplemented();
    }

    /// @inheritdoc IHooks
    function beforeDonate(address, PoolKey calldata, uint256, uint256, bytes calldata)
        external
        virtual
        returns (bytes4)
    {
        revert HookNotImplemented();
    }

    /// @inheritdoc IHooks
    function afterDonate(address, PoolKey calldata, uint256, uint256, bytes calldata)
        external
        virtual
        returns (bytes4)
    {
        revert HookNotImplemented();
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {PoolId} from "../types/PoolId.sol";
import {IPoolManager} from "../interfaces/IPoolManager.sol";
import {Position} from "./Position.sol";

/// @notice A helper library to provide state getters that use extsload
library StateLibrary {
    /// @notice index of pools mapping in the PoolManager
    bytes32 public constant POOLS_SLOT = bytes32(uint256(6));

    /// @notice index of feeGrowthGlobal0X128 in Pool.State
    uint256 public constant FEE_GROWTH_GLOBAL0_OFFSET = 1;

    // feeGrowthGlobal1X128 offset in Pool.State = 2

    /// @notice index of liquidity in Pool.State
    uint256 public constant LIQUIDITY_OFFSET = 3;

    /// @notice index of TicksInfo mapping in Pool.State: mapping(int24 => TickInfo) ticks;
    uint256 public constant TICKS_OFFSET = 4;

    /// @notice index of tickBitmap mapping in Pool.State
    uint256 public constant TICK_BITMAP_OFFSET = 5;

    /// @notice index of Position.State mapping in Pool.State: mapping(bytes32 => Position.State) positions;
    uint256 public constant POSITIONS_OFFSET = 6;

    /**
     * @notice Get Slot0 of the pool: sqrtPriceX96, tick, protocolFee, lpFee
     * @dev Corresponds to pools[poolId].slot0
     * @param manager The pool manager contract.
     * @param poolId The ID of the pool.
     * @return sqrtPriceX96 The square root of the price of the pool, in Q96 precision.
     * @return tick The current tick of the pool.
     * @return protocolFee The protocol fee of the pool.
     * @return lpFee The swap fee of the pool.
     */
    function getSlot0(IPoolManager manager, PoolId poolId)
        internal
        view
        returns (uint160 sqrtPriceX96, int24 tick, uint24 protocolFee, uint24 lpFee)
    {
        // slot key of Pool.State value: `pools[poolId]`
        bytes32 stateSlot = _getPoolStateSlot(poolId);

        bytes32 data = manager.extsload(stateSlot);

        //   24 bits  |24bits|24bits      |24 bits|160 bits
        // 0x000000   |000bb8|000000      |ffff75 |0000000000000000fe3aa841ba359daa0ea9eff7
        // ---------- | fee  |protocolfee | tick  | sqrtPriceX96
        assembly ("memory-safe") {
            // bottom 160 bits of data
            sqrtPriceX96 := and(data, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
            // next 24 bits of data
            tick := signextend(2, shr(160, data))
            // next 24 bits of data
            protocolFee := and(shr(184, data), 0xFFFFFF)
            // last 24 bits of data
            lpFee := and(shr(208, data), 0xFFFFFF)
        }
    }

    /**
     * @notice Retrieves the tick information of a pool at a specific tick.
     * @dev Corresponds to pools[poolId].ticks[tick]
     * @param manager The pool manager contract.
     * @param poolId The ID of the pool.
     * @param tick The tick to retrieve information for.
     * @return liquidityGross The total position liquidity that references this tick
     * @return liquidityNet The amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left)
     * @return feeGrowthOutside0X128 fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
     * @return feeGrowthOutside1X128 fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
     */
    function getTickInfo(IPoolManager manager, PoolId poolId, int24 tick)
        internal
        view
        returns (
            uint128 liquidityGross,
            int128 liquidityNet,
            uint256 feeGrowthOutside0X128,
            uint256 feeGrowthOutside1X128
        )
    {
        bytes32 slot = _getTickInfoSlot(poolId, tick);

        // read all 3 words of the TickInfo struct
        bytes32[] memory data = manager.extsload(slot, 3);
        assembly ("memory-safe") {
            let firstWord := mload(add(data, 32))
            liquidityNet := sar(128, firstWord)
            liquidityGross := and(firstWord, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
            feeGrowthOutside0X128 := mload(add(data, 64))
            feeGrowthOutside1X128 := mload(add(data, 96))
        }
    }

    /**
     * @notice Retrieves the liquidity information of a pool at a specific tick.
     * @dev Corresponds to pools[poolId].ticks[tick].liquidityGross and pools[poolId].ticks[tick].liquidityNet. A more gas efficient version of getTickInfo
     * @param manager The pool manager contract.
     * @param poolId The ID of the pool.
     * @param tick The tick to retrieve liquidity for.
     * @return liquidityGross The total position liquidity that references this tick
     * @return liquidityNet The amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left)
     */
    function getTickLiquidity(IPoolManager manager, PoolId poolId, int24 tick)
        internal
        view
        returns (uint128 liquidityGross, int128 liquidityNet)
    {
        bytes32 slot = _getTickInfoSlot(poolId, tick);

        bytes32 value = manager.extsload(slot);
        assembly ("memory-safe") {
            liquidityNet := sar(128, value)
            liquidityGross := and(value, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
        }
    }

    /**
     * @notice Retrieves the fee growth outside a tick range of a pool
     * @dev Corresponds to pools[poolId].ticks[tick].feeGrowthOutside0X128 and pools[poolId].ticks[tick].feeGrowthOutside1X128. A more gas efficient version of getTickInfo
     * @param manager The pool manager contract.
     * @param poolId The ID of the pool.
     * @param tick The tick to retrieve fee growth for.
     * @return feeGrowthOutside0X128 fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
     * @return feeGrowthOutside1X128 fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
     */
    function getTickFeeGrowthOutside(IPoolManager manager, PoolId poolId, int24 tick)
        internal
        view
        returns (uint256 feeGrowthOutside0X128, uint256 feeGrowthOutside1X128)
    {
        bytes32 slot = _getTickInfoSlot(poolId, tick);

        // offset by 1 word, since the first word is liquidityGross + liquidityNet
        bytes32[] memory data = manager.extsload(bytes32(uint256(slot) + 1), 2);
        assembly ("memory-safe") {
            feeGrowthOutside0X128 := mload(add(data, 32))
            feeGrowthOutside1X128 := mload(add(data, 64))
        }
    }

    /**
     * @notice Retrieves the global fee growth of a pool.
     * @dev Corresponds to pools[poolId].feeGrowthGlobal0X128 and pools[poolId].feeGrowthGlobal1X128
     * @param manager The pool manager contract.
     * @param poolId The ID of the pool.
     * @return feeGrowthGlobal0 The global fee growth for token0.
     * @return feeGrowthGlobal1 The global fee growth for token1.
     * @dev Note that feeGrowthGlobal can be artificially inflated
     * For pools with a single liquidity position, actors can donate to themselves to freely inflate feeGrowthGlobal
     * atomically donating and collecting fees in the same unlockCallback may make the inflated value more extreme
     */
    function getFeeGrowthGlobals(IPoolManager manager, PoolId poolId)
        internal
        view
        returns (uint256 feeGrowthGlobal0, uint256 feeGrowthGlobal1)
    {
        // slot key of Pool.State value: `pools[poolId]`
        bytes32 stateSlot = _getPoolStateSlot(poolId);

        // Pool.State, `uint256 feeGrowthGlobal0X128`
        bytes32 slot_feeGrowthGlobal0X128 = bytes32(uint256(stateSlot) + FEE_GROWTH_GLOBAL0_OFFSET);

        // read the 2 words of feeGrowthGlobal
        bytes32[] memory data = manager.extsload(slot_feeGrowthGlobal0X128, 2);
        assembly ("memory-safe") {
            feeGrowthGlobal0 := mload(add(data, 32))
            feeGrowthGlobal1 := mload(add(data, 64))
        }
    }

    /**
     * @notice Retrieves total the liquidity of a pool.
     * @dev Corresponds to pools[poolId].liquidity
     * @param manager The pool manager contract.
     * @param poolId The ID of the pool.
     * @return liquidity The liquidity of the pool.
     */
    function getLiquidity(IPoolManager manager, PoolId poolId) internal view returns (uint128 liquidity) {
        // slot key of Pool.State value: `pools[poolId]`
        bytes32 stateSlot = _getPoolStateSlot(poolId);

        // Pool.State: `uint128 liquidity`
        bytes32 slot = bytes32(uint256(stateSlot) + LIQUIDITY_OFFSET);

        liquidity = uint128(uint256(manager.extsload(slot)));
    }

    /**
     * @notice Retrieves the tick bitmap of a pool at a specific tick.
     * @dev Corresponds to pools[poolId].tickBitmap[tick]
     * @param manager The pool manager contract.
     * @param poolId The ID of the pool.
     * @param tick The tick to retrieve the bitmap for.
     * @return tickBitmap The bitmap of the tick.
     */
    function getTickBitmap(IPoolManager manager, PoolId poolId, int16 tick)
        internal
        view
        returns (uint256 tickBitmap)
    {
        // slot key of Pool.State value: `pools[poolId]`
        bytes32 stateSlot = _getPoolStateSlot(poolId);

        // Pool.State: `mapping(int16 => uint256) tickBitmap;`
        bytes32 tickBitmapMapping = bytes32(uint256(stateSlot) + TICK_BITMAP_OFFSET);

        // slot id of the mapping key: `pools[poolId].tickBitmap[tick]
        bytes32 slot = keccak256(abi.encodePacked(int256(tick), tickBitmapMapping));

        tickBitmap = uint256(manager.extsload(slot));
    }

    /**
     * @notice Retrieves the position information of a pool without needing to calculate the `positionId`.
     * @dev Corresponds to pools[poolId].positions[positionId]
     * @param poolId The ID of the pool.
     * @param owner The owner of the liquidity position.
     * @param tickLower The lower tick of the liquidity range.
     * @param tickUpper The upper tick of the liquidity range.
     * @param salt The bytes32 randomness to further distinguish position state.
     * @return liquidity The liquidity of the position.
     * @return feeGrowthInside0LastX128 The fee growth inside the position for token0.
     * @return feeGrowthInside1LastX128 The fee growth inside the position for token1.
     */
    function getPositionInfo(
        IPoolManager manager,
        PoolId poolId,
        address owner,
        int24 tickLower,
        int24 tickUpper,
        bytes32 salt
    ) internal view returns (uint128 liquidity, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128) {
        // positionKey = keccak256(abi.encodePacked(owner, tickLower, tickUpper, salt))
        bytes32 positionKey = Position.calculatePositionKey(owner, tickLower, tickUpper, salt);

        (liquidity, feeGrowthInside0LastX128, feeGrowthInside1LastX128) = getPositionInfo(manager, poolId, positionKey);
    }

    /**
     * @notice Retrieves the position information of a pool at a specific position ID.
     * @dev Corresponds to pools[poolId].positions[positionId]
     * @param manager The pool manager contract.
     * @param poolId The ID of the pool.
     * @param positionId The ID of the position.
     * @return liquidity The liquidity of the position.
     * @return feeGrowthInside0LastX128 The fee growth inside the position for token0.
     * @return feeGrowthInside1LastX128 The fee growth inside the position for token1.
     */
    function getPositionInfo(IPoolManager manager, PoolId poolId, bytes32 positionId)
        internal
        view
        returns (uint128 liquidity, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128)
    {
        bytes32 slot = _getPositionInfoSlot(poolId, positionId);

        // read all 3 words of the Position.State struct
        bytes32[] memory data = manager.extsload(slot, 3);

        assembly ("memory-safe") {
            liquidity := mload(add(data, 32))
            feeGrowthInside0LastX128 := mload(add(data, 64))
            feeGrowthInside1LastX128 := mload(add(data, 96))
        }
    }

    /**
     * @notice Retrieves the liquidity of a position.
     * @dev Corresponds to pools[poolId].positions[positionId].liquidity. More gas efficient for just retrieiving liquidity as compared to getPositionInfo
     * @param manager The pool manager contract.
     * @param poolId The ID of the pool.
     * @param positionId The ID of the position.
     * @return liquidity The liquidity of the position.
     */
    function getPositionLiquidity(IPoolManager manager, PoolId poolId, bytes32 positionId)
        internal
        view
        returns (uint128 liquidity)
    {
        bytes32 slot = _getPositionInfoSlot(poolId, positionId);
        liquidity = uint128(uint256(manager.extsload(slot)));
    }

    /**
     * @notice Calculate the fee growth inside a tick range of a pool
     * @dev pools[poolId].feeGrowthInside0LastX128 in Position.State is cached and can become stale. This function will calculate the up to date feeGrowthInside
     * @param manager The pool manager contract.
     * @param poolId The ID of the pool.
     * @param tickLower The lower tick of the range.
     * @param tickUpper The upper tick of the range.
     * @return feeGrowthInside0X128 The fee growth inside the tick range for token0.
     * @return feeGrowthInside1X128 The fee growth inside the tick range for token1.
     */
    function getFeeGrowthInside(IPoolManager manager, PoolId poolId, int24 tickLower, int24 tickUpper)
        internal
        view
        returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128)
    {
        (uint256 feeGrowthGlobal0X128, uint256 feeGrowthGlobal1X128) = getFeeGrowthGlobals(manager, poolId);

        (uint256 lowerFeeGrowthOutside0X128, uint256 lowerFeeGrowthOutside1X128) =
            getTickFeeGrowthOutside(manager, poolId, tickLower);
        (uint256 upperFeeGrowthOutside0X128, uint256 upperFeeGrowthOutside1X128) =
            getTickFeeGrowthOutside(manager, poolId, tickUpper);
        (, int24 tickCurrent,,) = getSlot0(manager, poolId);
        unchecked {
            if (tickCurrent < tickLower) {
                feeGrowthInside0X128 = lowerFeeGrowthOutside0X128 - upperFeeGrowthOutside0X128;
                feeGrowthInside1X128 = lowerFeeGrowthOutside1X128 - upperFeeGrowthOutside1X128;
            } else if (tickCurrent >= tickUpper) {
                feeGrowthInside0X128 = upperFeeGrowthOutside0X128 - lowerFeeGrowthOutside0X128;
                feeGrowthInside1X128 = upperFeeGrowthOutside1X128 - lowerFeeGrowthOutside1X128;
            } else {
                feeGrowthInside0X128 = feeGrowthGlobal0X128 - lowerFeeGrowthOutside0X128 - upperFeeGrowthOutside0X128;
                feeGrowthInside1X128 = feeGrowthGlobal1X128 - lowerFeeGrowthOutside1X128 - upperFeeGrowthOutside1X128;
            }
        }
    }

    function _getPoolStateSlot(PoolId poolId) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(PoolId.unwrap(poolId), POOLS_SLOT));
    }

    function _getTickInfoSlot(PoolId poolId, int24 tick) internal pure returns (bytes32) {
        // slot key of Pool.State value: `pools[poolId]`
        bytes32 stateSlot = _getPoolStateSlot(poolId);

        // Pool.State: `mapping(int24 => TickInfo) ticks`
        bytes32 ticksMappingSlot = bytes32(uint256(stateSlot) + TICKS_OFFSET);

        // slot key of the tick key: `pools[poolId].ticks[tick]
        return keccak256(abi.encodePacked(int256(tick), ticksMappingSlot));
    }

    function _getPositionInfoSlot(PoolId poolId, bytes32 positionId) internal pure returns (bytes32) {
        // slot key of Pool.State value: `pools[poolId]`
        bytes32 stateSlot = _getPoolStateSlot(poolId);

        // Pool.State: `mapping(bytes32 => Position.State) positions;`
        bytes32 positionMapping = bytes32(uint256(stateSlot) + POSITIONS_OFFSET);

        // slot of the mapping key: `pools[poolId].positions[positionId]
        return keccak256(abi.encodePacked(positionId, positionMapping));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {PoolKey} from "../types/PoolKey.sol";
import {IHooks} from "../interfaces/IHooks.sol";
import {SafeCast} from "./SafeCast.sol";
import {LPFeeLibrary} from "./LPFeeLibrary.sol";
import {BalanceDelta, toBalanceDelta, BalanceDeltaLibrary} from "../types/BalanceDelta.sol";
import {BeforeSwapDelta, BeforeSwapDeltaLibrary} from "../types/BeforeSwapDelta.sol";
import {IPoolManager} from "../interfaces/IPoolManager.sol";
import {ParseBytes} from "./ParseBytes.sol";
import {CustomRevert} from "./CustomRevert.sol";

/// @notice V4 decides whether to invoke specific hooks by inspecting the least significant bits
/// of the address that the hooks contract is deployed to.
/// For example, a hooks contract deployed to address: 0x0000000000000000000000000000000000002400
/// has the lowest bits '10 0100 0000 0000' which would cause the 'before initialize' and 'after add liquidity' hooks to be used.
library Hooks {
    using LPFeeLibrary for uint24;
    using Hooks for IHooks;
    using SafeCast for int256;
    using BeforeSwapDeltaLibrary for BeforeSwapDelta;
    using ParseBytes for bytes;
    using CustomRevert for bytes4;

    uint160 internal constant ALL_HOOK_MASK = uint160((1 << 14) - 1);

    uint160 internal constant BEFORE_INITIALIZE_FLAG = 1 << 13;
    uint160 internal constant AFTER_INITIALIZE_FLAG = 1 << 12;

    uint160 internal constant BEFORE_ADD_LIQUIDITY_FLAG = 1 << 11;
    uint160 internal constant AFTER_ADD_LIQUIDITY_FLAG = 1 << 10;

    uint160 internal constant BEFORE_REMOVE_LIQUIDITY_FLAG = 1 << 9;
    uint160 internal constant AFTER_REMOVE_LIQUIDITY_FLAG = 1 << 8;

    uint160 internal constant BEFORE_SWAP_FLAG = 1 << 7;
    uint160 internal constant AFTER_SWAP_FLAG = 1 << 6;

    uint160 internal constant BEFORE_DONATE_FLAG = 1 << 5;
    uint160 internal constant AFTER_DONATE_FLAG = 1 << 4;

    uint160 internal constant BEFORE_SWAP_RETURNS_DELTA_FLAG = 1 << 3;
    uint160 internal constant AFTER_SWAP_RETURNS_DELTA_FLAG = 1 << 2;
    uint160 internal constant AFTER_ADD_LIQUIDITY_RETURNS_DELTA_FLAG = 1 << 1;
    uint160 internal constant AFTER_REMOVE_LIQUIDITY_RETURNS_DELTA_FLAG = 1 << 0;

    struct Permissions {
        bool beforeInitialize;
        bool afterInitialize;
        bool beforeAddLiquidity;
        bool afterAddLiquidity;
        bool beforeRemoveLiquidity;
        bool afterRemoveLiquidity;
        bool beforeSwap;
        bool afterSwap;
        bool beforeDonate;
        bool afterDonate;
        bool beforeSwapReturnDelta;
        bool afterSwapReturnDelta;
        bool afterAddLiquidityReturnDelta;
        bool afterRemoveLiquidityReturnDelta;
    }

    /// @notice Thrown if the address will not lead to the specified hook calls being called
    /// @param hooks The address of the hooks contract
    error HookAddressNotValid(address hooks);

    /// @notice Hook did not return its selector
    error InvalidHookResponse();

    /// @notice Additional context for ERC-7751 wrapped error when a hook call fails
    error HookCallFailed();

    /// @notice The hook's delta changed the swap from exactIn to exactOut or vice versa
    error HookDeltaExceedsSwapAmount();

    /// @notice Utility function intended to be used in hook constructors to ensure
    /// the deployed hooks address causes the intended hooks to be called
    /// @param permissions The hooks that are intended to be called
    /// @dev permissions param is memory as the function will be called from constructors
    function validateHookPermissions(IHooks self, Permissions memory permissions) internal pure {
        if (
            permissions.beforeInitialize != self.hasPermission(BEFORE_INITIALIZE_FLAG)
                || permissions.afterInitialize != self.hasPermission(AFTER_INITIALIZE_FLAG)
                || permissions.beforeAddLiquidity != self.hasPermission(BEFORE_ADD_LIQUIDITY_FLAG)
                || permissions.afterAddLiquidity != self.hasPermission(AFTER_ADD_LIQUIDITY_FLAG)
                || permissions.beforeRemoveLiquidity != self.hasPermission(BEFORE_REMOVE_LIQUIDITY_FLAG)
                || permissions.afterRemoveLiquidity != self.hasPermission(AFTER_REMOVE_LIQUIDITY_FLAG)
                || permissions.beforeSwap != self.hasPermission(BEFORE_SWAP_FLAG)
                || permissions.afterSwap != self.hasPermission(AFTER_SWAP_FLAG)
                || permissions.beforeDonate != self.hasPermission(BEFORE_DONATE_FLAG)
                || permissions.afterDonate != self.hasPermission(AFTER_DONATE_FLAG)
                || permissions.beforeSwapReturnDelta != self.hasPermission(BEFORE_SWAP_RETURNS_DELTA_FLAG)
                || permissions.afterSwapReturnDelta != self.hasPermission(AFTER_SWAP_RETURNS_DELTA_FLAG)
                || permissions.afterAddLiquidityReturnDelta != self.hasPermission(AFTER_ADD_LIQUIDITY_RETURNS_DELTA_FLAG)
                || permissions.afterRemoveLiquidityReturnDelta
                    != self.hasPermission(AFTER_REMOVE_LIQUIDITY_RETURNS_DELTA_FLAG)
        ) {
            HookAddressNotValid.selector.revertWith(address(self));
        }
    }

    /// @notice Ensures that the hook address includes at least one hook flag or dynamic fees, or is the 0 address
    /// @param self The hook to verify
    /// @param fee The fee of the pool the hook is used with
    /// @return bool True if the hook address is valid
    function isValidHookAddress(IHooks self, uint24 fee) internal pure returns (bool) {
        // The hook can only have a flag to return a hook delta on an action if it also has the corresponding action flag
        if (!self.hasPermission(BEFORE_SWAP_FLAG) && self.hasPermission(BEFORE_SWAP_RETURNS_DELTA_FLAG)) return false;
        if (!self.hasPermission(AFTER_SWAP_FLAG) && self.hasPermission(AFTER_SWAP_RETURNS_DELTA_FLAG)) return false;
        if (!self.hasPermission(AFTER_ADD_LIQUIDITY_FLAG) && self.hasPermission(AFTER_ADD_LIQUIDITY_RETURNS_DELTA_FLAG))
        {
            return false;
        }
        if (
            !self.hasPermission(AFTER_REMOVE_LIQUIDITY_FLAG)
                && self.hasPermission(AFTER_REMOVE_LIQUIDITY_RETURNS_DELTA_FLAG)
        ) return false;

        // If there is no hook contract set, then fee cannot be dynamic
        // If a hook contract is set, it must have at least 1 flag set, or have a dynamic fee
        return address(self) == address(0)
            ? !fee.isDynamicFee()
            : (uint160(address(self)) & ALL_HOOK_MASK > 0 || fee.isDynamicFee());
    }

    /// @notice performs a hook call using the given calldata on the given hook that doesn't return a delta
    /// @return result The complete data returned by the hook
    function callHook(IHooks self, bytes memory data) internal returns (bytes memory result) {
        bool success;
        assembly ("memory-safe") {
            success := call(gas(), self, 0, add(data, 0x20), mload(data), 0, 0)
        }
        // Revert with FailedHookCall, containing any error message to bubble up
        if (!success) CustomRevert.bubbleUpAndRevertWith(address(self), bytes4(data), HookCallFailed.selector);

        // The call was successful, fetch the returned data
        assembly ("memory-safe") {
            // allocate result byte array from the free memory pointer
            result := mload(0x40)
            // store new free memory pointer at the end of the array padded to 32 bytes
            mstore(0x40, add(result, and(add(returndatasize(), 0x3f), not(0x1f))))
            // store length in memory
            mstore(result, returndatasize())
            // copy return data to result
            returndatacopy(add(result, 0x20), 0, returndatasize())
        }

        // Length must be at least 32 to contain the selector. Check expected selector and returned selector match.
        if (result.length < 32 || result.parseSelector() != data.parseSelector()) {
            InvalidHookResponse.selector.revertWith();
        }
    }

    /// @notice performs a hook call using the given calldata on the given hook
    /// @return int256 The delta returned by the hook
    function callHookWithReturnDelta(IHooks self, bytes memory data, bool parseReturn) internal returns (int256) {
        bytes memory result = callHook(self, data);

        // If this hook wasn't meant to return something, default to 0 delta
        if (!parseReturn) return 0;

        // A length of 64 bytes is required to return a bytes4, and a 32 byte delta
        if (result.length != 64) InvalidHookResponse.selector.revertWith();
        return result.parseReturnDelta();
    }

    /// @notice modifier to prevent calling a hook if they initiated the action
    modifier noSelfCall(IHooks self) {
        if (msg.sender != address(self)) {
            _;
        }
    }

    /// @notice calls beforeInitialize hook if permissioned and validates return value
    function beforeInitialize(IHooks self, PoolKey memory key, uint160 sqrtPriceX96) internal noSelfCall(self) {
        if (self.hasPermission(BEFORE_INITIALIZE_FLAG)) {
            self.callHook(abi.encodeCall(IHooks.beforeInitialize, (msg.sender, key, sqrtPriceX96)));
        }
    }

    /// @notice calls afterInitialize hook if permissioned and validates return value
    function afterInitialize(IHooks self, PoolKey memory key, uint160 sqrtPriceX96, int24 tick)
        internal
        noSelfCall(self)
    {
        if (self.hasPermission(AFTER_INITIALIZE_FLAG)) {
            self.callHook(abi.encodeCall(IHooks.afterInitialize, (msg.sender, key, sqrtPriceX96, tick)));
        }
    }

    /// @notice calls beforeModifyLiquidity hook if permissioned and validates return value
    function beforeModifyLiquidity(
        IHooks self,
        PoolKey memory key,
        IPoolManager.ModifyLiquidityParams memory params,
        bytes calldata hookData
    ) internal noSelfCall(self) {
        if (params.liquidityDelta > 0 && self.hasPermission(BEFORE_ADD_LIQUIDITY_FLAG)) {
            self.callHook(abi.encodeCall(IHooks.beforeAddLiquidity, (msg.sender, key, params, hookData)));
        } else if (params.liquidityDelta <= 0 && self.hasPermission(BEFORE_REMOVE_LIQUIDITY_FLAG)) {
            self.callHook(abi.encodeCall(IHooks.beforeRemoveLiquidity, (msg.sender, key, params, hookData)));
        }
    }

    /// @notice calls afterModifyLiquidity hook if permissioned and validates return value
    function afterModifyLiquidity(
        IHooks self,
        PoolKey memory key,
        IPoolManager.ModifyLiquidityParams memory params,
        BalanceDelta delta,
        BalanceDelta feesAccrued,
        bytes calldata hookData
    ) internal returns (BalanceDelta callerDelta, BalanceDelta hookDelta) {
        if (msg.sender == address(self)) return (delta, BalanceDeltaLibrary.ZERO_DELTA);

        callerDelta = delta;
        if (params.liquidityDelta > 0) {
            if (self.hasPermission(AFTER_ADD_LIQUIDITY_FLAG)) {
                hookDelta = BalanceDelta.wrap(
                    self.callHookWithReturnDelta(
                        abi.encodeCall(
                            IHooks.afterAddLiquidity, (msg.sender, key, params, delta, feesAccrued, hookData)
                        ),
                        self.hasPermission(AFTER_ADD_LIQUIDITY_RETURNS_DELTA_FLAG)
                    )
                );
                callerDelta = callerDelta - hookDelta;
            }
        } else {
            if (self.hasPermission(AFTER_REMOVE_LIQUIDITY_FLAG)) {
                hookDelta = BalanceDelta.wrap(
                    self.callHookWithReturnDelta(
                        abi.encodeCall(
                            IHooks.afterRemoveLiquidity, (msg.sender, key, params, delta, feesAccrued, hookData)
                        ),
                        self.hasPermission(AFTER_REMOVE_LIQUIDITY_RETURNS_DELTA_FLAG)
                    )
                );
                callerDelta = callerDelta - hookDelta;
            }
        }
    }

    /// @notice calls beforeSwap hook if permissioned and validates return value
    function beforeSwap(IHooks self, PoolKey memory key, IPoolManager.SwapParams memory params, bytes calldata hookData)
        internal
        returns (int256 amountToSwap, BeforeSwapDelta hookReturn, uint24 lpFeeOverride)
    {
        amountToSwap = params.amountSpecified;
        if (msg.sender == address(self)) return (amountToSwap, BeforeSwapDeltaLibrary.ZERO_DELTA, lpFeeOverride);

        if (self.hasPermission(BEFORE_SWAP_FLAG)) {
            bytes memory result = callHook(self, abi.encodeCall(IHooks.beforeSwap, (msg.sender, key, params, hookData)));

            // A length of 96 bytes is required to return a bytes4, a 32 byte delta, and an LP fee
            if (result.length != 96) InvalidHookResponse.selector.revertWith();

            // dynamic fee pools that want to override the cache fee, return a valid fee with the override flag. If override flag
            // is set but an invalid fee is returned, the transaction will revert. Otherwise the current LP fee will be used
            if (key.fee.isDynamicFee()) lpFeeOverride = result.parseFee();

            // skip this logic for the case where the hook return is 0
            if (self.hasPermission(BEFORE_SWAP_RETURNS_DELTA_FLAG)) {
                hookReturn = BeforeSwapDelta.wrap(result.parseReturnDelta());

                // any return in unspecified is passed to the afterSwap hook for handling
                int128 hookDeltaSpecified = hookReturn.getSpecifiedDelta();

                // Update the swap amount according to the hook's return, and check that the swap type doesn't change (exact input/output)
                if (hookDeltaSpecified != 0) {
                    bool exactInput = amountToSwap < 0;
                    amountToSwap += hookDeltaSpecified;
                    if (exactInput ? amountToSwap > 0 : amountToSwap < 0) {
                        HookDeltaExceedsSwapAmount.selector.revertWith();
                    }
                }
            }
        }
    }

    /// @notice calls afterSwap hook if permissioned and validates return value
    function afterSwap(
        IHooks self,
        PoolKey memory key,
        IPoolManager.SwapParams memory params,
        BalanceDelta swapDelta,
        bytes calldata hookData,
        BeforeSwapDelta beforeSwapHookReturn
    ) internal returns (BalanceDelta, BalanceDelta) {
        if (msg.sender == address(self)) return (swapDelta, BalanceDeltaLibrary.ZERO_DELTA);

        int128 hookDeltaSpecified = beforeSwapHookReturn.getSpecifiedDelta();
        int128 hookDeltaUnspecified = beforeSwapHookReturn.getUnspecifiedDelta();

        if (self.hasPermission(AFTER_SWAP_FLAG)) {
            hookDeltaUnspecified += self.callHookWithReturnDelta(
                abi.encodeCall(IHooks.afterSwap, (msg.sender, key, params, swapDelta, hookData)),
                self.hasPermission(AFTER_SWAP_RETURNS_DELTA_FLAG)
            ).toInt128();
        }

        BalanceDelta hookDelta;
        if (hookDeltaUnspecified != 0 || hookDeltaSpecified != 0) {
            hookDelta = (params.amountSpecified < 0 == params.zeroForOne)
                ? toBalanceDelta(hookDeltaSpecified, hookDeltaUnspecified)
                : toBalanceDelta(hookDeltaUnspecified, hookDeltaSpecified);

            // the caller has to pay for (or receive) the hook's delta
            swapDelta = swapDelta - hookDelta;
        }
        return (swapDelta, hookDelta);
    }

    /// @notice calls beforeDonate hook if permissioned and validates return value
    function beforeDonate(IHooks self, PoolKey memory key, uint256 amount0, uint256 amount1, bytes calldata hookData)
        internal
        noSelfCall(self)
    {
        if (self.hasPermission(BEFORE_DONATE_FLAG)) {
            self.callHook(abi.encodeCall(IHooks.beforeDonate, (msg.sender, key, amount0, amount1, hookData)));
        }
    }

    /// @notice calls afterDonate hook if permissioned and validates return value
    function afterDonate(IHooks self, PoolKey memory key, uint256 amount0, uint256 amount1, bytes calldata hookData)
        internal
        noSelfCall(self)
    {
        if (self.hasPermission(AFTER_DONATE_FLAG)) {
            self.callHook(abi.encodeCall(IHooks.afterDonate, (msg.sender, key, amount0, amount1, hookData)));
        }
    }

    function hasPermission(IHooks self, uint160 flag) internal pure returns (bool) {
        return uint160(address(self)) & flag != 0;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {PoolKey} from "../types/PoolKey.sol";
import {BalanceDelta} from "../types/BalanceDelta.sol";
import {IPoolManager} from "./IPoolManager.sol";
import {BeforeSwapDelta} from "../types/BeforeSwapDelta.sol";

/// @notice V4 decides whether to invoke specific hooks by inspecting the least significant bits
/// of the address that the hooks contract is deployed to.
/// For example, a hooks contract deployed to address: 0x0000000000000000000000000000000000002400
/// has the lowest bits '10 0100 0000 0000' which would cause the 'before initialize' and 'after add liquidity' hooks to be used.
/// See the Hooks library for the full spec.
/// @dev Should only be callable by the v4 PoolManager.
interface IHooks {
    /// @notice The hook called before the state of a pool is initialized
    /// @param sender The initial msg.sender for the initialize call
    /// @param key The key for the pool being initialized
    /// @param sqrtPriceX96 The sqrt(price) of the pool as a Q64.96
    /// @return bytes4 The function selector for the hook
    function beforeInitialize(address sender, PoolKey calldata key, uint160 sqrtPriceX96) external returns (bytes4);

    /// @notice The hook called after the state of a pool is initialized
    /// @param sender The initial msg.sender for the initialize call
    /// @param key The key for the pool being initialized
    /// @param sqrtPriceX96 The sqrt(price) of the pool as a Q64.96
    /// @param tick The current tick after the state of a pool is initialized
    /// @return bytes4 The function selector for the hook
    function afterInitialize(address sender, PoolKey calldata key, uint160 sqrtPriceX96, int24 tick)
        external
        returns (bytes4);

    /// @notice The hook called before liquidity is added
    /// @param sender The initial msg.sender for the add liquidity call
    /// @param key The key for the pool
    /// @param params The parameters for adding liquidity
    /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be passed on to the hook
    /// @return bytes4 The function selector for the hook
    function beforeAddLiquidity(
        address sender,
        PoolKey calldata key,
        IPoolManager.ModifyLiquidityParams calldata params,
        bytes calldata hookData
    ) external returns (bytes4);

    /// @notice The hook called after liquidity is added
    /// @param sender The initial msg.sender for the add liquidity call
    /// @param key The key for the pool
    /// @param params The parameters for adding liquidity
    /// @param delta The caller's balance delta after adding liquidity; the sum of principal delta, fees accrued, and hook delta
    /// @param feesAccrued The fees accrued since the last time fees were collected from this position
    /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be passed on to the hook
    /// @return bytes4 The function selector for the hook
    /// @return BalanceDelta The hook's delta in token0 and token1. Positive: the hook is owed/took currency, negative: the hook owes/sent currency
    function afterAddLiquidity(
        address sender,
        PoolKey calldata key,
        IPoolManager.ModifyLiquidityParams calldata params,
        BalanceDelta delta,
        BalanceDelta feesAccrued,
        bytes calldata hookData
    ) external returns (bytes4, BalanceDelta);

    /// @notice The hook called before liquidity is removed
    /// @param sender The initial msg.sender for the remove liquidity call
    /// @param key The key for the pool
    /// @param params The parameters for removing liquidity
    /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be be passed on to the hook
    /// @return bytes4 The function selector for the hook
    function beforeRemoveLiquidity(
        address sender,
        PoolKey calldata key,
        IPoolManager.ModifyLiquidityParams calldata params,
        bytes calldata hookData
    ) external returns (bytes4);

    /// @notice The hook called after liquidity is removed
    /// @param sender The initial msg.sender for the remove liquidity call
    /// @param key The key for the pool
    /// @param params The parameters for removing liquidity
    /// @param delta The caller's balance delta after removing liquidity; the sum of principal delta, fees accrued, and hook delta
    /// @param feesAccrued The fees accrued since the last time fees were collected from this position
    /// @param hookData Arbitrary data handed into the PoolManager by the liquidity provider to be be passed on to the hook
    /// @return bytes4 The function selector for the hook
    /// @return BalanceDelta The hook's delta in token0 and token1. Positive: the hook is owed/took currency, negative: the hook owes/sent currency
    function afterRemoveLiquidity(
        address sender,
        PoolKey calldata key,
        IPoolManager.ModifyLiquidityParams calldata params,
        BalanceDelta delta,
        BalanceDelta feesAccrued,
        bytes calldata hookData
    ) external returns (bytes4, BalanceDelta);

    /// @notice The hook called before a swap
    /// @param sender The initial msg.sender for the swap call
    /// @param key The key for the pool
    /// @param params The parameters for the swap
    /// @param hookData Arbitrary data handed into the PoolManager by the swapper to be be passed on to the hook
    /// @return bytes4 The function selector for the hook
    /// @return BeforeSwapDelta The hook's delta in specified and unspecified currencies. Positive: the hook is owed/took currency, negative: the hook owes/sent currency
    /// @return uint24 Optionally override the lp fee, only used if three conditions are met: 1. the Pool has a dynamic fee, 2. the value's 2nd highest bit is set (23rd bit, 0x400000), and 3. the value is less than or equal to the maximum fee (1 million)
    function beforeSwap(
        address sender,
        PoolKey calldata key,
        IPoolManager.SwapParams calldata params,
        bytes calldata hookData
    ) external returns (bytes4, BeforeSwapDelta, uint24);

    /// @notice The hook called after a swap
    /// @param sender The initial msg.sender for the swap call
    /// @param key The key for the pool
    /// @param params The parameters for the swap
    /// @param delta The amount owed to the caller (positive) or owed to the pool (negative)
    /// @param hookData Arbitrary data handed into the PoolManager by the swapper to be be passed on to the hook
    /// @return bytes4 The function selector for the hook
    /// @return int128 The hook's delta in unspecified currency. Positive: the hook is owed/took currency, negative: the hook owes/sent currency
    function afterSwap(
        address sender,
        PoolKey calldata key,
        IPoolManager.SwapParams calldata params,
        BalanceDelta delta,
        bytes calldata hookData
    ) external returns (bytes4, int128);

    /// @notice The hook called before donate
    /// @param sender The initial msg.sender for the donate call
    /// @param key The key for the pool
    /// @param amount0 The amount of token0 being donated
    /// @param amount1 The amount of token1 being donated
    /// @param hookData Arbitrary data handed into the PoolManager by the donor to be be passed on to the hook
    /// @return bytes4 The function selector for the hook
    function beforeDonate(
        address sender,
        PoolKey calldata key,
        uint256 amount0,
        uint256 amount1,
        bytes calldata hookData
    ) external returns (bytes4);

    /// @notice The hook called after donate
    /// @param sender The initial msg.sender for the donate call
    /// @param key The key for the pool
    /// @param amount0 The amount of token0 being donated
    /// @param amount1 The amount of token1 being donated
    /// @param hookData Arbitrary data handed into the PoolManager by the donor to be be passed on to the hook
    /// @return bytes4 The function selector for the hook
    function afterDonate(
        address sender,
        PoolKey calldata key,
        uint256 amount0,
        uint256 amount1,
        bytes calldata hookData
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

import {Currency} from "../types/Currency.sol";
import {PoolKey} from "../types/PoolKey.sol";
import {IHooks} from "./IHooks.sol";
import {IERC6909Claims} from "./external/IERC6909Claims.sol";
import {IProtocolFees} from "./IProtocolFees.sol";
import {BalanceDelta} from "../types/BalanceDelta.sol";
import {PoolId} from "../types/PoolId.sol";
import {IExtsload} from "./IExtsload.sol";
import {IExttload} from "./IExttload.sol";

/// @notice Interface for the PoolManager
interface IPoolManager is IProtocolFees, IERC6909Claims, IExtsload, IExttload {
    /// @notice Thrown when a currency is not netted out after the contract is unlocked
    error CurrencyNotSettled();

    /// @notice Thrown when trying to interact with a non-initialized pool
    error PoolNotInitialized();

    /// @notice Thrown when unlock is called, but the contract is already unlocked
    error AlreadyUnlocked();

    /// @notice Thrown when a function is called that requires the contract to be unlocked, but it is not
    error ManagerLocked();

    /// @notice Pools are limited to type(int16).max tickSpacing in #initialize, to prevent overflow
    error TickSpacingTooLarge(int24 tickSpacing);

    /// @notice Pools must have a positive non-zero tickSpacing passed to #initialize
    error TickSpacingTooSmall(int24 tickSpacing);

    /// @notice PoolKey must have currencies where address(currency0) < address(currency1)
    error CurrenciesOutOfOrderOrEqual(address currency0, address currency1);

    /// @notice Thrown when a call to updateDynamicLPFee is made by an address that is not the hook,
    /// or on a pool that does not have a dynamic swap fee.
    error UnauthorizedDynamicLPFeeUpdate();

    /// @notice Thrown when trying to swap amount of 0
    error SwapAmountCannotBeZero();

    ///@notice Thrown when native currency is passed to a non native settlement
    error NonzeroNativeValue();

    /// @notice Thrown when `clear` is called with an amount that is not exactly equal to the open currency delta.
    error MustClearExactPositiveDelta();

    /// @notice Emitted when a new pool is initialized
    /// @param id The abi encoded hash of the pool key struct for the new pool
    /// @param currency0 The first currency of the pool by address sort order
    /// @param currency1 The second currency of the pool by address sort order
    /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
    /// @param tickSpacing The minimum number of ticks between initialized ticks
    /// @param hooks The hooks contract address for the pool, or address(0) if none
    /// @param sqrtPriceX96 The price of the pool on initialization
    /// @param tick The initial tick of the pool corresponding to the initialized price
    event Initialize(
        PoolId indexed id,
        Currency indexed currency0,
        Currency indexed currency1,
        uint24 fee,
        int24 tickSpacing,
        IHooks hooks,
        uint160 sqrtPriceX96,
        int24 tick
    );

    /// @notice Emitted when a liquidity position is modified
    /// @param id The abi encoded hash of the pool key struct for the pool that was modified
    /// @param sender The address that modified the pool
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param liquidityDelta The amount of liquidity that was added or removed
    /// @param salt The extra data to make positions unique
    event ModifyLiquidity(
        PoolId indexed id, address indexed sender, int24 tickLower, int24 tickUpper, int256 liquidityDelta, bytes32 salt
    );

    /// @notice Emitted for swaps between currency0 and currency1
    /// @param id The abi encoded hash of the pool key struct for the pool that was modified
    /// @param sender The address that initiated the swap call, and that received the callback
    /// @param amount0 The delta of the currency0 balance of the pool
    /// @param amount1 The delta of the currency1 balance of the pool
    /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
    /// @param liquidity The liquidity of the pool after the swap
    /// @param tick The log base 1.0001 of the price of the pool after the swap
    /// @param fee The swap fee in hundredths of a bip
    event Swap(
        PoolId indexed id,
        address indexed sender,
        int128 amount0,
        int128 amount1,
        uint160 sqrtPriceX96,
        uint128 liquidity,
        int24 tick,
        uint24 fee
    );

    /// @notice Emitted for donations
    /// @param id The abi encoded hash of the pool key struct for the pool that was donated to
    /// @param sender The address that initiated the donate call
    /// @param amount0 The amount donated in currency0
    /// @param amount1 The amount donated in currency1
    event Donate(PoolId indexed id, address indexed sender, uint256 amount0, uint256 amount1);

    /// @notice All interactions on the contract that account deltas require unlocking. A caller that calls `unlock` must implement
    /// `IUnlockCallback(msg.sender).unlockCallback(data)`, where they interact with the remaining functions on this contract.
    /// @dev The only functions callable without an unlocking are `initialize` and `updateDynamicLPFee`
    /// @param data Any data to pass to the callback, via `IUnlockCallback(msg.sender).unlockCallback(data)`
    /// @return The data returned by the call to `IUnlockCallback(msg.sender).unlockCallback(data)`
    function unlock(bytes calldata data) external returns (bytes memory);

    /// @notice Initialize the state for a given pool ID
    /// @dev A swap fee totaling MAX_SWAP_FEE (100%) makes exact output swaps impossible since the input is entirely consumed by the fee
    /// @param key The pool key for the pool to initialize
    /// @param sqrtPriceX96 The initial square root price
    /// @return tick The initial tick of the pool
    function initialize(PoolKey memory key, uint160 sqrtPriceX96) external returns (int24 tick);

    struct ModifyLiquidityParams {
        // the lower and upper tick of the position
        int24 tickLower;
        int24 tickUpper;
        // how to modify the liquidity
        int256 liquidityDelta;
        // a value to set if you want unique liquidity positions at the same range
        bytes32 salt;
    }

    /// @notice Modify the liquidity for the given pool
    /// @dev Poke by calling with a zero liquidityDelta
    /// @param key The pool to modify liquidity in
    /// @param params The parameters for modifying the liquidity
    /// @param hookData The data to pass through to the add/removeLiquidity hooks
    /// @return callerDelta The balance delta of the caller of modifyLiquidity. This is the total of both principal, fee deltas, and hook deltas if applicable
    /// @return feesAccrued The balance delta of the fees generated in the liquidity range. Returned for informational purposes
    /// @dev Note that feesAccrued can be artificially inflated by a malicious actor and integrators should be careful using the value
    /// For pools with a single liquidity position, actors can donate to themselves to inflate feeGrowthGlobal (and consequently feesAccrued)
    /// atomically donating and collecting fees in the same unlockCallback may make the inflated value more extreme
    function modifyLiquidity(PoolKey memory key, ModifyLiquidityParams memory params, bytes calldata hookData)
        external
        returns (BalanceDelta callerDelta, BalanceDelta feesAccrued);

    struct SwapParams {
        /// Whether to swap token0 for token1 or vice versa
        bool zeroForOne;
        /// The desired input amount if negative (exactIn), or the desired output amount if positive (exactOut)
        int256 amountSpecified;
        /// The sqrt price at which, if reached, the swap will stop executing
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Swap against the given pool
    /// @param key The pool to swap in
    /// @param params The parameters for swapping
    /// @param hookData The data to pass through to the swap hooks
    /// @return swapDelta The balance delta of the address swapping
    /// @dev Swapping on low liquidity pools may cause unexpected swap amounts when liquidity available is less than amountSpecified.
    /// Additionally note that if interacting with hooks that have the BEFORE_SWAP_RETURNS_DELTA_FLAG or AFTER_SWAP_RETURNS_DELTA_FLAG
    /// the hook may alter the swap input/output. Integrators should perform checks on the returned swapDelta.
    function swap(PoolKey memory key, SwapParams memory params, bytes calldata hookData)
        external
        returns (BalanceDelta swapDelta);

    /// @notice Donate the given currency amounts to the in-range liquidity providers of a pool
    /// @dev Calls to donate can be frontrun adding just-in-time liquidity, with the aim of receiving a portion donated funds.
    /// Donors should keep this in mind when designing donation mechanisms.
    /// @dev This function donates to in-range LPs at slot0.tick. In certain edge-cases of the swap algorithm, the `sqrtPrice` of
    /// a pool can be at the lower boundary of tick `n`, but the `slot0.tick` of the pool is already `n - 1`. In this case a call to
    /// `donate` would donate to tick `n - 1` (slot0.tick) not tick `n` (getTickAtSqrtPrice(slot0.sqrtPriceX96)).
    /// Read the comments in `Pool.swap()` for more information about this.
    /// @param key The key of the pool to donate to
    /// @param amount0 The amount of currency0 to donate
    /// @param amount1 The amount of currency1 to donate
    /// @param hookData The data to pass through to the donate hooks
    /// @return BalanceDelta The delta of the caller after the donate
    function donate(PoolKey memory key, uint256 amount0, uint256 amount1, bytes calldata hookData)
        external
        returns (BalanceDelta);

    /// @notice Writes the current ERC20 balance of the specified currency to transient storage
    /// This is used to checkpoint balances for the manager and derive deltas for the caller.
    /// @dev This MUST be called before any ERC20 tokens are sent into the contract, but can be skipped
    /// for native tokens because the amount to settle is determined by the sent value.
    /// However, if an ERC20 token has been synced and not settled, and the caller instead wants to settle
    /// native funds, this function can be called with the native currency to then be able to settle the native currency
    function sync(Currency currency) external;

    /// @notice Called by the user to net out some value owed to the user
    /// @dev Will revert if the requested amount is not available, consider using `mint` instead
    /// @dev Can also be used as a mechanism for free flash loans
    /// @param currency The currency to withdraw from the pool manager
    /// @param to The address to withdraw to
    /// @param amount The amount of currency to withdraw
    function take(Currency currency, address to, uint256 amount) external;

    /// @notice Called by the user to pay what is owed
    /// @return paid The amount of currency settled
    function settle() external payable returns (uint256 paid);

    /// @notice Called by the user to pay on behalf of another address
    /// @param recipient The address to credit for the payment
    /// @return paid The amount of currency settled
    function settleFor(address recipient) external payable returns (uint256 paid);

    /// @notice WARNING - Any currency that is cleared, will be non-retrievable, and locked in the contract permanently.
    /// A call to clear will zero out a positive balance WITHOUT a corresponding transfer.
    /// @dev This could be used to clear a balance that is considered dust.
    /// Additionally, the amount must be the exact positive balance. This is to enforce that the caller is aware of the amount being cleared.
    function clear(Currency currency, uint256 amount) external;

    /// @notice Called by the user to move value into ERC6909 balance
    /// @param to The address to mint the tokens to
    /// @param id The currency address to mint to ERC6909s, as a uint256
    /// @param amount The amount of currency to mint
    /// @dev The id is converted to a uint160 to correspond to a currency address
    /// If the upper 12 bytes are not 0, they will be 0-ed out
    function mint(address to, uint256 id, uint256 amount) external;

    /// @notice Called by the user to move value from ERC6909 balance
    /// @param from The address to burn the tokens from
    /// @param id The currency address to burn from ERC6909s, as a uint256
    /// @param amount The amount of currency to burn
    /// @dev The id is converted to a uint160 to correspond to a currency address
    /// If the upper 12 bytes are not 0, they will be 0-ed out
    function burn(address from, uint256 id, uint256 amount) external;

    /// @notice Updates the pools lp fees for the a pool that has enabled dynamic lp fees.
    /// @dev A swap fee totaling MAX_SWAP_FEE (100%) makes exact output swaps impossible since the input is entirely consumed by the fee
    /// @param key The key of the pool to update dynamic LP fees for
    /// @param newDynamicLPFee The new dynamic pool LP fee
    function updateDynamicLPFee(PoolKey memory key, uint24 newDynamicLPFee) external;
}

File 7 of 39 : PoolKey.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {Currency} from "./Currency.sol";
import {IHooks} from "../interfaces/IHooks.sol";
import {PoolIdLibrary} from "./PoolId.sol";

using PoolIdLibrary for PoolKey global;

/// @notice Returns the key for identifying a pool
struct PoolKey {
    /// @notice The lower currency of the pool, sorted numerically
    Currency currency0;
    /// @notice The higher currency of the pool, sorted numerically
    Currency currency1;
    /// @notice The pool LP fee, capped at 1_000_000. If the highest bit is 1, the pool has a dynamic fee and must be exactly equal to 0x800000
    uint24 fee;
    /// @notice Ticks that involve positions must be a multiple of tick spacing
    int24 tickSpacing;
    /// @notice The hooks of the pool
    IHooks hooks;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     * ```
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {IERC20Minimal} from "../interfaces/external/IERC20Minimal.sol";
import {CustomRevert} from "../libraries/CustomRevert.sol";

type Currency is address;

using {greaterThan as >, lessThan as <, greaterThanOrEqualTo as >=, equals as ==} for Currency global;
using CurrencyLibrary for Currency global;

function equals(Currency currency, Currency other) pure returns (bool) {
    return Currency.unwrap(currency) == Currency.unwrap(other);
}

function greaterThan(Currency currency, Currency other) pure returns (bool) {
    return Currency.unwrap(currency) > Currency.unwrap(other);
}

function lessThan(Currency currency, Currency other) pure returns (bool) {
    return Currency.unwrap(currency) < Currency.unwrap(other);
}

function greaterThanOrEqualTo(Currency currency, Currency other) pure returns (bool) {
    return Currency.unwrap(currency) >= Currency.unwrap(other);
}

/// @title CurrencyLibrary
/// @dev This library allows for transferring and holding native tokens and ERC20 tokens
library CurrencyLibrary {
    /// @notice Additional context for ERC-7751 wrapped error when a native transfer fails
    error NativeTransferFailed();

    /// @notice Additional context for ERC-7751 wrapped error when an ERC20 transfer fails
    error ERC20TransferFailed();

    /// @notice A constant to represent the native currency
    Currency public constant ADDRESS_ZERO = Currency.wrap(address(0));

    function transfer(Currency currency, address to, uint256 amount) internal {
        // altered from https://github.com/transmissions11/solmate/blob/44a9963d4c78111f77caa0e65d677b8b46d6f2e6/src/utils/SafeTransferLib.sol
        // modified custom error selectors

        bool success;
        if (currency.isAddressZero()) {
            assembly ("memory-safe") {
                // Transfer the ETH and revert if it fails.
                success := call(gas(), to, amount, 0, 0, 0, 0)
            }
            // revert with NativeTransferFailed, containing the bubbled up error as an argument
            if (!success) {
                CustomRevert.bubbleUpAndRevertWith(to, bytes4(0), NativeTransferFailed.selector);
            }
        } else {
            assembly ("memory-safe") {
                // Get a pointer to some free memory.
                let fmp := mload(0x40)

                // Write the abi-encoded calldata into memory, beginning with the function selector.
                mstore(fmp, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                mstore(add(fmp, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
                mstore(add(fmp, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

                success :=
                    and(
                        // Set success to whether the call reverted, if not we check it either
                        // returned exactly 1 (can't just be non-zero data), or had no return data.
                        or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                        // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                        // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                        // Counterintuitively, this call must be positioned second to the or() call in the
                        // surrounding and() call or else returndatasize() will be zero during the computation.
                        call(gas(), currency, 0, fmp, 68, 0, 32)
                    )

                // Now clean the memory we used
                mstore(fmp, 0) // 4 byte `selector` and 28 bytes of `to` were stored here
                mstore(add(fmp, 0x20), 0) // 4 bytes of `to` and 28 bytes of `amount` were stored here
                mstore(add(fmp, 0x40), 0) // 4 bytes of `amount` were stored here
            }
            // revert with ERC20TransferFailed, containing the bubbled up error as an argument
            if (!success) {
                CustomRevert.bubbleUpAndRevertWith(
                    Currency.unwrap(currency), IERC20Minimal.transfer.selector, ERC20TransferFailed.selector
                );
            }
        }
    }

    function balanceOfSelf(Currency currency) internal view returns (uint256) {
        if (currency.isAddressZero()) {
            return address(this).balance;
        } else {
            return IERC20Minimal(Currency.unwrap(currency)).balanceOf(address(this));
        }
    }

    function balanceOf(Currency currency, address owner) internal view returns (uint256) {
        if (currency.isAddressZero()) {
            return owner.balance;
        } else {
            return IERC20Minimal(Currency.unwrap(currency)).balanceOf(owner);
        }
    }

    function isAddressZero(Currency currency) internal pure returns (bool) {
        return Currency.unwrap(currency) == Currency.unwrap(ADDRESS_ZERO);
    }

    function toId(Currency currency) internal pure returns (uint256) {
        return uint160(Currency.unwrap(currency));
    }

    // If the upper 12 bytes are non-zero, they will be zero-ed out
    // Therefore, fromId() and toId() are not inverses of each other
    function fromId(uint256 id) internal pure returns (Currency) {
        return Currency.wrap(address(uint160(id)));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {PoolKey} from "./PoolKey.sol";

type PoolId is bytes32;

/// @notice Library for computing the ID of a pool
library PoolIdLibrary {
    /// @notice Returns value equal to keccak256(abi.encode(poolKey))
    function toId(PoolKey memory poolKey) internal pure returns (PoolId poolId) {
        assembly ("memory-safe") {
            // 0xa0 represents the total size of the poolKey struct (5 slots of 32 bytes)
            poolId := keccak256(poolKey, 0xa0)
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {BitMath} from "./BitMath.sol";
import {CustomRevert} from "./CustomRevert.sol";

/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
library TickMath {
    using CustomRevert for bytes4;

    /// @notice Thrown when the tick passed to #getSqrtPriceAtTick is not between MIN_TICK and MAX_TICK
    error InvalidTick(int24 tick);
    /// @notice Thrown when the price passed to #getTickAtSqrtPrice does not correspond to a price between MIN_TICK and MAX_TICK
    error InvalidSqrtPrice(uint160 sqrtPriceX96);

    /// @dev The minimum tick that may be passed to #getSqrtPriceAtTick computed from log base 1.0001 of 2**-128
    /// @dev If ever MIN_TICK and MAX_TICK are not centered around 0, the absTick logic in getSqrtPriceAtTick cannot be used
    int24 internal constant MIN_TICK = -887272;
    /// @dev The maximum tick that may be passed to #getSqrtPriceAtTick computed from log base 1.0001 of 2**128
    /// @dev If ever MIN_TICK and MAX_TICK are not centered around 0, the absTick logic in getSqrtPriceAtTick cannot be used
    int24 internal constant MAX_TICK = 887272;

    /// @dev The minimum tick spacing value drawn from the range of type int16 that is greater than 0, i.e. min from the range [1, 32767]
    int24 internal constant MIN_TICK_SPACING = 1;
    /// @dev The maximum tick spacing value drawn from the range of type int16, i.e. max from the range [1, 32767]
    int24 internal constant MAX_TICK_SPACING = type(int16).max;

    /// @dev The minimum value that can be returned from #getSqrtPriceAtTick. Equivalent to getSqrtPriceAtTick(MIN_TICK)
    uint160 internal constant MIN_SQRT_PRICE = 4295128739;
    /// @dev The maximum value that can be returned from #getSqrtPriceAtTick. Equivalent to getSqrtPriceAtTick(MAX_TICK)
    uint160 internal constant MAX_SQRT_PRICE = 1461446703485210103287273052203988822378723970342;
    /// @dev A threshold used for optimized bounds check, equals `MAX_SQRT_PRICE - MIN_SQRT_PRICE - 1`
    uint160 internal constant MAX_SQRT_PRICE_MINUS_MIN_SQRT_PRICE_MINUS_ONE =
        1461446703485210103287273052203988822378723970342 - 4295128739 - 1;

    /// @notice Given a tickSpacing, compute the maximum usable tick
    function maxUsableTick(int24 tickSpacing) internal pure returns (int24) {
        unchecked {
            return (MAX_TICK / tickSpacing) * tickSpacing;
        }
    }

    /// @notice Given a tickSpacing, compute the minimum usable tick
    function minUsableTick(int24 tickSpacing) internal pure returns (int24) {
        unchecked {
            return (MIN_TICK / tickSpacing) * tickSpacing;
        }
    }

    /// @notice Calculates sqrt(1.0001^tick) * 2^96
    /// @dev Throws if |tick| > max tick
    /// @param tick The input tick for the above formula
    /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the price of the two assets (currency1/currency0)
    /// at the given tick
    function getSqrtPriceAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
        unchecked {
            uint256 absTick;
            assembly ("memory-safe") {
                tick := signextend(2, tick)
                // mask = 0 if tick >= 0 else -1 (all 1s)
                let mask := sar(255, tick)
                // if tick >= 0, |tick| = tick = 0 ^ tick
                // if tick < 0, |tick| = ~~|tick| = ~(-|tick| - 1) = ~(tick - 1) = (-1) ^ (tick - 1)
                // either way, |tick| = mask ^ (tick + mask)
                absTick := xor(mask, add(mask, tick))
            }

            if (absTick > uint256(int256(MAX_TICK))) InvalidTick.selector.revertWith(tick);

            // The tick is decomposed into bits, and for each bit with index i that is set, the product of 1/sqrt(1.0001^(2^i))
            // is calculated (using Q128.128). The constants used for this calculation are rounded to the nearest integer

            // Equivalent to:
            //     price = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
            //     or price = int(2**128 / sqrt(1.0001)) if (absTick & 0x1) else 1 << 128
            uint256 price;
            assembly ("memory-safe") {
                price := xor(shl(128, 1), mul(xor(shl(128, 1), 0xfffcb933bd6fad37aa2d162d1a594001), and(absTick, 0x1)))
            }
            if (absTick & 0x2 != 0) price = (price * 0xfff97272373d413259a46990580e213a) >> 128;
            if (absTick & 0x4 != 0) price = (price * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
            if (absTick & 0x8 != 0) price = (price * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
            if (absTick & 0x10 != 0) price = (price * 0xffcb9843d60f6159c9db58835c926644) >> 128;
            if (absTick & 0x20 != 0) price = (price * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
            if (absTick & 0x40 != 0) price = (price * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
            if (absTick & 0x80 != 0) price = (price * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
            if (absTick & 0x100 != 0) price = (price * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
            if (absTick & 0x200 != 0) price = (price * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
            if (absTick & 0x400 != 0) price = (price * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
            if (absTick & 0x800 != 0) price = (price * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
            if (absTick & 0x1000 != 0) price = (price * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
            if (absTick & 0x2000 != 0) price = (price * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
            if (absTick & 0x4000 != 0) price = (price * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
            if (absTick & 0x8000 != 0) price = (price * 0x31be135f97d08fd981231505542fcfa6) >> 128;
            if (absTick & 0x10000 != 0) price = (price * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
            if (absTick & 0x20000 != 0) price = (price * 0x5d6af8dedb81196699c329225ee604) >> 128;
            if (absTick & 0x40000 != 0) price = (price * 0x2216e584f5fa1ea926041bedfe98) >> 128;
            if (absTick & 0x80000 != 0) price = (price * 0x48a170391f7dc42444e8fa2) >> 128;

            assembly ("memory-safe") {
                // if (tick > 0) price = type(uint256).max / price;
                if sgt(tick, 0) { price := div(not(0), price) }

                // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
                // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
                // we round up in the division so getTickAtSqrtPrice of the output price is always consistent
                // `sub(shl(32, 1), 1)` is `type(uint32).max`
                // `price + type(uint32).max` will not overflow because `price` fits in 192 bits
                sqrtPriceX96 := shr(32, add(price, sub(shl(32, 1), 1)))
            }
        }
    }

    /// @notice Calculates the greatest tick value such that getSqrtPriceAtTick(tick) <= sqrtPriceX96
    /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_PRICE, as MIN_SQRT_PRICE is the lowest value getSqrtPriceAtTick may
    /// ever return.
    /// @param sqrtPriceX96 The sqrt price for which to compute the tick as a Q64.96
    /// @return tick The greatest tick for which the getSqrtPriceAtTick(tick) is less than or equal to the input sqrtPriceX96
    function getTickAtSqrtPrice(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
        unchecked {
            // Equivalent: if (sqrtPriceX96 < MIN_SQRT_PRICE || sqrtPriceX96 >= MAX_SQRT_PRICE) revert InvalidSqrtPrice();
            // second inequality must be >= because the price can never reach the price at the max tick
            // if sqrtPriceX96 < MIN_SQRT_PRICE, the `sub` underflows and `gt` is true
            // if sqrtPriceX96 >= MAX_SQRT_PRICE, sqrtPriceX96 - MIN_SQRT_PRICE > MAX_SQRT_PRICE - MIN_SQRT_PRICE - 1
            if ((sqrtPriceX96 - MIN_SQRT_PRICE) > MAX_SQRT_PRICE_MINUS_MIN_SQRT_PRICE_MINUS_ONE) {
                InvalidSqrtPrice.selector.revertWith(sqrtPriceX96);
            }

            uint256 price = uint256(sqrtPriceX96) << 32;

            uint256 r = price;
            uint256 msb = BitMath.mostSignificantBit(r);

            if (msb >= 128) r = price >> (msb - 127);
            else r = price << (127 - msb);

            int256 log_2 = (int256(msb) - 128) << 64;

            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(63, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(62, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(61, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(60, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(59, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(58, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(57, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(56, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(55, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(54, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(53, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(52, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(51, f))
                r := shr(f, r)
            }
            assembly ("memory-safe") {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(50, f))
            }

            int256 log_sqrt10001 = log_2 * 255738958999603826347141; // Q22.128 number

            // Magic number represents the ceiling of the maximum value of the error when approximating log_sqrt10001(x)
            int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);

            // Magic number represents the minimum value of the error when approximating log_sqrt10001(x), when
            // sqrtPrice is from the range (2^-64, 2^64). This is safe as MIN_SQRT_PRICE is more than 2^-64. If MIN_SQRT_PRICE
            // is changed, this may need to be changed too
            int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);

            tick = tickLow == tickHi ? tickLow : getSqrtPriceAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {SafeCast} from "../libraries/SafeCast.sol";

/// @dev Two `int128` values packed into a single `int256` where the upper 128 bits represent the amount0
/// and the lower 128 bits represent the amount1.
type BalanceDelta is int256;

using {add as +, sub as -, eq as ==, neq as !=} for BalanceDelta global;
using BalanceDeltaLibrary for BalanceDelta global;
using SafeCast for int256;

function toBalanceDelta(int128 _amount0, int128 _amount1) pure returns (BalanceDelta balanceDelta) {
    assembly ("memory-safe") {
        balanceDelta := or(shl(128, _amount0), and(sub(shl(128, 1), 1), _amount1))
    }
}

function add(BalanceDelta a, BalanceDelta b) pure returns (BalanceDelta) {
    int256 res0;
    int256 res1;
    assembly ("memory-safe") {
        let a0 := sar(128, a)
        let a1 := signextend(15, a)
        let b0 := sar(128, b)
        let b1 := signextend(15, b)
        res0 := add(a0, b0)
        res1 := add(a1, b1)
    }
    return toBalanceDelta(res0.toInt128(), res1.toInt128());
}

function sub(BalanceDelta a, BalanceDelta b) pure returns (BalanceDelta) {
    int256 res0;
    int256 res1;
    assembly ("memory-safe") {
        let a0 := sar(128, a)
        let a1 := signextend(15, a)
        let b0 := sar(128, b)
        let b1 := signextend(15, b)
        res0 := sub(a0, b0)
        res1 := sub(a1, b1)
    }
    return toBalanceDelta(res0.toInt128(), res1.toInt128());
}

function eq(BalanceDelta a, BalanceDelta b) pure returns (bool) {
    return BalanceDelta.unwrap(a) == BalanceDelta.unwrap(b);
}

function neq(BalanceDelta a, BalanceDelta b) pure returns (bool) {
    return BalanceDelta.unwrap(a) != BalanceDelta.unwrap(b);
}

/// @notice Library for getting the amount0 and amount1 deltas from the BalanceDelta type
library BalanceDeltaLibrary {
    /// @notice A BalanceDelta of 0
    BalanceDelta public constant ZERO_DELTA = BalanceDelta.wrap(0);

    function amount0(BalanceDelta balanceDelta) internal pure returns (int128 _amount0) {
        assembly ("memory-safe") {
            _amount0 := sar(128, balanceDelta)
        }
    }

    function amount1(BalanceDelta balanceDelta) internal pure returns (int128 _amount1) {
        assembly ("memory-safe") {
            _amount1 := signextend(15, balanceDelta)
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

// Return type of the beforeSwap hook.
// Upper 128 bits is the delta in specified tokens. Lower 128 bits is delta in unspecified tokens (to match the afterSwap hook)
type BeforeSwapDelta is int256;

// Creates a BeforeSwapDelta from specified and unspecified
function toBeforeSwapDelta(int128 deltaSpecified, int128 deltaUnspecified)
    pure
    returns (BeforeSwapDelta beforeSwapDelta)
{
    assembly ("memory-safe") {
        beforeSwapDelta := or(shl(128, deltaSpecified), and(sub(shl(128, 1), 1), deltaUnspecified))
    }
}

/// @notice Library for getting the specified and unspecified deltas from the BeforeSwapDelta type
library BeforeSwapDeltaLibrary {
    /// @notice A BeforeSwapDelta of 0
    BeforeSwapDelta public constant ZERO_DELTA = BeforeSwapDelta.wrap(0);

    /// extracts int128 from the upper 128 bits of the BeforeSwapDelta
    /// returned by beforeSwap
    function getSpecifiedDelta(BeforeSwapDelta delta) internal pure returns (int128 deltaSpecified) {
        assembly ("memory-safe") {
            deltaSpecified := sar(128, delta)
        }
    }

    /// extracts int128 from the lower 128 bits of the BeforeSwapDelta
    /// returned by beforeSwap and afterSwap
    function getUnspecifiedDelta(BeforeSwapDelta delta) internal pure returns (int128 deltaUnspecified) {
        assembly ("memory-safe") {
            deltaUnspecified := signextend(15, delta)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

File 17 of 39 : IERC721Receiver.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.20;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {IUnlockCallback} from "@uniswap/v4-core/src/interfaces/callback/IUnlockCallback.sol";
import {IPoolManager} from "@uniswap/v4-core/src/interfaces/IPoolManager.sol";
import {ImmutableState} from "./ImmutableState.sol";

/// @title Safe Callback
/// @notice A contract that only allows the Uniswap v4 PoolManager to call the unlockCallback
abstract contract SafeCallback is ImmutableState, IUnlockCallback {
    /// @notice Thrown when calling unlockCallback where the caller is not PoolManager
    error NotPoolManager();

    constructor(IPoolManager _poolManager) ImmutableState(_poolManager) {}

    /// @notice Only allow calls from the PoolManager contract
    modifier onlyPoolManager() {
        if (msg.sender != address(poolManager)) revert NotPoolManager();
        _;
    }

    /// @inheritdoc IUnlockCallback
    /// @dev We force the onlyPoolManager modifier by exposing a virtual function after the onlyPoolManager check.
    function unlockCallback(bytes calldata data) external onlyPoolManager returns (bytes memory) {
        return _unlockCallback(data);
    }

    /// @dev to be implemented by the child contract, to safely guarantee the logic is only executed by the PoolManager
    function _unlockCallback(bytes calldata data) internal virtual returns (bytes memory);
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;

import {FullMath} from "./FullMath.sol";
import {FixedPoint128} from "./FixedPoint128.sol";
import {LiquidityMath} from "./LiquidityMath.sol";
import {CustomRevert} from "./CustomRevert.sol";

/// @title Position
/// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary
/// @dev Positions store additional state for tracking fees owed to the position
library Position {
    using CustomRevert for bytes4;

    /// @notice Cannot update a position with no liquidity
    error CannotUpdateEmptyPosition();

    // info stored for each user's position
    struct State {
        // the amount of liquidity owned by this position
        uint128 liquidity;
        // fee growth per unit of liquidity as of the last update to liquidity or fees owed
        uint256 feeGrowthInside0LastX128;
        uint256 feeGrowthInside1LastX128;
    }

    /// @notice Returns the State struct of a position, given an owner and position boundaries
    /// @param self The mapping containing all user positions
    /// @param owner The address of the position owner
    /// @param tickLower The lower tick boundary of the position
    /// @param tickUpper The upper tick boundary of the position
    /// @param salt A unique value to differentiate between multiple positions in the same range
    /// @return position The position info struct of the given owners' position
    function get(mapping(bytes32 => State) storage self, address owner, int24 tickLower, int24 tickUpper, bytes32 salt)
        internal
        view
        returns (State storage position)
    {
        bytes32 positionKey = calculatePositionKey(owner, tickLower, tickUpper, salt);
        position = self[positionKey];
    }

    /// @notice A helper function to calculate the position key
    /// @param owner The address of the position owner
    /// @param tickLower the lower tick boundary of the position
    /// @param tickUpper the upper tick boundary of the position
    /// @param salt A unique value to differentiate between multiple positions in the same range, by the same owner. Passed in by the caller.
    function calculatePositionKey(address owner, int24 tickLower, int24 tickUpper, bytes32 salt)
        internal
        pure
        returns (bytes32 positionKey)
    {
        // positionKey = keccak256(abi.encodePacked(owner, tickLower, tickUpper, salt))
        assembly ("memory-safe") {
            let fmp := mload(0x40)
            mstore(add(fmp, 0x26), salt) // [0x26, 0x46)
            mstore(add(fmp, 0x06), tickUpper) // [0x23, 0x26)
            mstore(add(fmp, 0x03), tickLower) // [0x20, 0x23)
            mstore(fmp, owner) // [0x0c, 0x20)
            positionKey := keccak256(add(fmp, 0x0c), 0x3a) // len is 58 bytes

            // now clean the memory we used
            mstore(add(fmp, 0x40), 0) // fmp+0x40 held salt
            mstore(add(fmp, 0x20), 0) // fmp+0x20 held tickLower, tickUpper, salt
            mstore(fmp, 0) // fmp held owner
        }
    }

    /// @notice Credits accumulated fees to a user's position
    /// @param self The individual position to update
    /// @param liquidityDelta The change in pool liquidity as a result of the position update
    /// @param feeGrowthInside0X128 The all-time fee growth in currency0, per unit of liquidity, inside the position's tick boundaries
    /// @param feeGrowthInside1X128 The all-time fee growth in currency1, per unit of liquidity, inside the position's tick boundaries
    /// @return feesOwed0 The amount of currency0 owed to the position owner
    /// @return feesOwed1 The amount of currency1 owed to the position owner
    function update(
        State storage self,
        int128 liquidityDelta,
        uint256 feeGrowthInside0X128,
        uint256 feeGrowthInside1X128
    ) internal returns (uint256 feesOwed0, uint256 feesOwed1) {
        uint128 liquidity = self.liquidity;

        if (liquidityDelta == 0) {
            // disallow pokes for 0 liquidity positions
            if (liquidity == 0) CannotUpdateEmptyPosition.selector.revertWith();
        } else {
            self.liquidity = LiquidityMath.addDelta(liquidity, liquidityDelta);
        }

        // calculate accumulated fees. overflow in the subtraction of fee growth is expected
        unchecked {
            feesOwed0 =
                FullMath.mulDiv(feeGrowthInside0X128 - self.feeGrowthInside0LastX128, liquidity, FixedPoint128.Q128);
            feesOwed1 =
                FullMath.mulDiv(feeGrowthInside1X128 - self.feeGrowthInside1LastX128, liquidity, FixedPoint128.Q128);
        }

        // update the position
        self.feeGrowthInside0LastX128 = feeGrowthInside0X128;
        self.feeGrowthInside1LastX128 = feeGrowthInside1X128;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {CustomRevert} from "./CustomRevert.sol";

/// @title Safe casting methods
/// @notice Contains methods for safely casting between types
library SafeCast {
    using CustomRevert for bytes4;

    error SafeCastOverflow();

    /// @notice Cast a uint256 to a uint160, revert on overflow
    /// @param x The uint256 to be downcasted
    /// @return y The downcasted integer, now type uint160
    function toUint160(uint256 x) internal pure returns (uint160 y) {
        y = uint160(x);
        if (y != x) SafeCastOverflow.selector.revertWith();
    }

    /// @notice Cast a uint256 to a uint128, revert on overflow
    /// @param x The uint256 to be downcasted
    /// @return y The downcasted integer, now type uint128
    function toUint128(uint256 x) internal pure returns (uint128 y) {
        y = uint128(x);
        if (x != y) SafeCastOverflow.selector.revertWith();
    }

    /// @notice Cast a int128 to a uint128, revert on overflow or underflow
    /// @param x The int128 to be casted
    /// @return y The casted integer, now type uint128
    function toUint128(int128 x) internal pure returns (uint128 y) {
        if (x < 0) SafeCastOverflow.selector.revertWith();
        y = uint128(x);
    }

    /// @notice Cast a int256 to a int128, revert on overflow or underflow
    /// @param x The int256 to be downcasted
    /// @return y The downcasted integer, now type int128
    function toInt128(int256 x) internal pure returns (int128 y) {
        y = int128(x);
        if (y != x) SafeCastOverflow.selector.revertWith();
    }

    /// @notice Cast a uint256 to a int256, revert on overflow
    /// @param x The uint256 to be casted
    /// @return y The casted integer, now type int256
    function toInt256(uint256 x) internal pure returns (int256 y) {
        y = int256(x);
        if (y < 0) SafeCastOverflow.selector.revertWith();
    }

    /// @notice Cast a uint256 to a int128, revert on overflow
    /// @param x The uint256 to be downcasted
    /// @return The downcasted integer, now type int128
    function toInt128(uint256 x) internal pure returns (int128) {
        if (x >= 1 << 127) SafeCastOverflow.selector.revertWith();
        return int128(int256(x));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {CustomRevert} from "./CustomRevert.sol";

/// @notice Library of helper functions for a pools LP fee
library LPFeeLibrary {
    using LPFeeLibrary for uint24;
    using CustomRevert for bytes4;

    /// @notice Thrown when the static or dynamic fee on a pool exceeds 100%.
    error LPFeeTooLarge(uint24 fee);

    /// @notice An lp fee of exactly 0b1000000... signals a dynamic fee pool. This isn't a valid static fee as it is > MAX_LP_FEE
    uint24 public constant DYNAMIC_FEE_FLAG = 0x800000;

    /// @notice the second bit of the fee returned by beforeSwap is used to signal if the stored LP fee should be overridden in this swap
    // only dynamic-fee pools can return a fee via the beforeSwap hook
    uint24 public constant OVERRIDE_FEE_FLAG = 0x400000;

    /// @notice mask to remove the override fee flag from a fee returned by the beforeSwaphook
    uint24 public constant REMOVE_OVERRIDE_MASK = 0xBFFFFF;

    /// @notice the lp fee is represented in hundredths of a bip, so the max is 100%
    uint24 public constant MAX_LP_FEE = 1000000;

    /// @notice returns true if a pool's LP fee signals that the pool has a dynamic fee
    /// @param self The fee to check
    /// @return bool True of the fee is dynamic
    function isDynamicFee(uint24 self) internal pure returns (bool) {
        return self == DYNAMIC_FEE_FLAG;
    }

    /// @notice returns true if an LP fee is valid, aka not above the maximum permitted fee
    /// @param self The fee to check
    /// @return bool True of the fee is valid
    function isValid(uint24 self) internal pure returns (bool) {
        return self <= MAX_LP_FEE;
    }

    /// @notice validates whether an LP fee is larger than the maximum, and reverts if invalid
    /// @param self The fee to validate
    function validate(uint24 self) internal pure {
        if (!self.isValid()) LPFeeTooLarge.selector.revertWith(self);
    }

    /// @notice gets and validates the initial LP fee for a pool. Dynamic fee pools have an initial fee of 0.
    /// @dev if a dynamic fee pool wants a non-0 initial fee, it should call `updateDynamicLPFee` in the afterInitialize hook
    /// @param self The fee to get the initial LP from
    /// @return initialFee 0 if the fee is dynamic, otherwise the fee (if valid)
    function getInitialLPFee(uint24 self) internal pure returns (uint24) {
        // the initial fee for a dynamic fee pool is 0
        if (self.isDynamicFee()) return 0;
        self.validate();
        return self;
    }

    /// @notice returns true if the fee has the override flag set (2nd highest bit of the uint24)
    /// @param self The fee to check
    /// @return bool True of the fee has the override flag set
    function isOverride(uint24 self) internal pure returns (bool) {
        return self & OVERRIDE_FEE_FLAG != 0;
    }

    /// @notice returns a fee with the override flag removed
    /// @param self The fee to remove the override flag from
    /// @return fee The fee without the override flag set
    function removeOverrideFlag(uint24 self) internal pure returns (uint24) {
        return self & REMOVE_OVERRIDE_MASK;
    }

    /// @notice Removes the override flag and validates the fee (reverts if the fee is too large)
    /// @param self The fee to remove the override flag from, and then validate
    /// @return fee The fee without the override flag set (if valid)
    function removeOverrideFlagAndValidate(uint24 self) internal pure returns (uint24 fee) {
        fee = self.removeOverrideFlag();
        fee.validate();
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/// @notice Parses bytes returned from hooks and the byte selector used to check return selectors from hooks.
/// @dev parseSelector also is used to parse the expected selector
/// For parsing hook returns, note that all hooks return either bytes4 or (bytes4, 32-byte-delta) or (bytes4, 32-byte-delta, uint24).
library ParseBytes {
    function parseSelector(bytes memory result) internal pure returns (bytes4 selector) {
        // equivalent: (selector,) = abi.decode(result, (bytes4, int256));
        assembly ("memory-safe") {
            selector := mload(add(result, 0x20))
        }
    }

    function parseFee(bytes memory result) internal pure returns (uint24 lpFee) {
        // equivalent: (,, lpFee) = abi.decode(result, (bytes4, int256, uint24));
        assembly ("memory-safe") {
            lpFee := mload(add(result, 0x60))
        }
    }

    function parseReturnDelta(bytes memory result) internal pure returns (int256 hookReturn) {
        // equivalent: (, hookReturnDelta) = abi.decode(result, (bytes4, int256));
        assembly ("memory-safe") {
            hookReturn := mload(add(result, 0x40))
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title Library for reverting with custom errors efficiently
/// @notice Contains functions for reverting with custom errors with different argument types efficiently
/// @dev To use this library, declare `using CustomRevert for bytes4;` and replace `revert CustomError()` with
/// `CustomError.selector.revertWith()`
/// @dev The functions may tamper with the free memory pointer but it is fine since the call context is exited immediately
library CustomRevert {
    /// @dev ERC-7751 error for wrapping bubbled up reverts
    error WrappedError(address target, bytes4 selector, bytes reason, bytes details);

    /// @dev Reverts with the selector of a custom error in the scratch space
    function revertWith(bytes4 selector) internal pure {
        assembly ("memory-safe") {
            mstore(0, selector)
            revert(0, 0x04)
        }
    }

    /// @dev Reverts with a custom error with an address argument in the scratch space
    function revertWith(bytes4 selector, address addr) internal pure {
        assembly ("memory-safe") {
            mstore(0, selector)
            mstore(0x04, and(addr, 0xffffffffffffffffffffffffffffffffffffffff))
            revert(0, 0x24)
        }
    }

    /// @dev Reverts with a custom error with an int24 argument in the scratch space
    function revertWith(bytes4 selector, int24 value) internal pure {
        assembly ("memory-safe") {
            mstore(0, selector)
            mstore(0x04, signextend(2, value))
            revert(0, 0x24)
        }
    }

    /// @dev Reverts with a custom error with a uint160 argument in the scratch space
    function revertWith(bytes4 selector, uint160 value) internal pure {
        assembly ("memory-safe") {
            mstore(0, selector)
            mstore(0x04, and(value, 0xffffffffffffffffffffffffffffffffffffffff))
            revert(0, 0x24)
        }
    }

    /// @dev Reverts with a custom error with two int24 arguments
    function revertWith(bytes4 selector, int24 value1, int24 value2) internal pure {
        assembly ("memory-safe") {
            let fmp := mload(0x40)
            mstore(fmp, selector)
            mstore(add(fmp, 0x04), signextend(2, value1))
            mstore(add(fmp, 0x24), signextend(2, value2))
            revert(fmp, 0x44)
        }
    }

    /// @dev Reverts with a custom error with two uint160 arguments
    function revertWith(bytes4 selector, uint160 value1, uint160 value2) internal pure {
        assembly ("memory-safe") {
            let fmp := mload(0x40)
            mstore(fmp, selector)
            mstore(add(fmp, 0x04), and(value1, 0xffffffffffffffffffffffffffffffffffffffff))
            mstore(add(fmp, 0x24), and(value2, 0xffffffffffffffffffffffffffffffffffffffff))
            revert(fmp, 0x44)
        }
    }

    /// @dev Reverts with a custom error with two address arguments
    function revertWith(bytes4 selector, address value1, address value2) internal pure {
        assembly ("memory-safe") {
            let fmp := mload(0x40)
            mstore(fmp, selector)
            mstore(add(fmp, 0x04), and(value1, 0xffffffffffffffffffffffffffffffffffffffff))
            mstore(add(fmp, 0x24), and(value2, 0xffffffffffffffffffffffffffffffffffffffff))
            revert(fmp, 0x44)
        }
    }

    /// @notice bubble up the revert message returned by a call and revert with a wrapped ERC-7751 error
    /// @dev this method can be vulnerable to revert data bombs
    function bubbleUpAndRevertWith(
        address revertingContract,
        bytes4 revertingFunctionSelector,
        bytes4 additionalContext
    ) internal pure {
        bytes4 wrappedErrorSelector = WrappedError.selector;
        assembly ("memory-safe") {
            // Ensure the size of the revert data is a multiple of 32 bytes
            let encodedDataSize := mul(div(add(returndatasize(), 31), 32), 32)

            let fmp := mload(0x40)

            // Encode wrapped error selector, address, function selector, offset, additional context, size, revert reason
            mstore(fmp, wrappedErrorSelector)
            mstore(add(fmp, 0x04), and(revertingContract, 0xffffffffffffffffffffffffffffffffffffffff))
            mstore(
                add(fmp, 0x24),
                and(revertingFunctionSelector, 0xffffffff00000000000000000000000000000000000000000000000000000000)
            )
            // offset revert reason
            mstore(add(fmp, 0x44), 0x80)
            // offset additional context
            mstore(add(fmp, 0x64), add(0xa0, encodedDataSize))
            // size revert reason
            mstore(add(fmp, 0x84), returndatasize())
            // revert reason
            returndatacopy(add(fmp, 0xa4), 0, returndatasize())
            // size additional context
            mstore(add(fmp, add(0xa4, encodedDataSize)), 0x04)
            // additional context
            mstore(
                add(fmp, add(0xc4, encodedDataSize)),
                and(additionalContext, 0xffffffff00000000000000000000000000000000000000000000000000000000)
            )
            revert(fmp, add(0xe4, encodedDataSize))
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @notice Interface for claims over a contract balance, wrapped as a ERC6909
interface IERC6909Claims {
    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event OperatorSet(address indexed owner, address indexed operator, bool approved);

    event Approval(address indexed owner, address indexed spender, uint256 indexed id, uint256 amount);

    event Transfer(address caller, address indexed from, address indexed to, uint256 indexed id, uint256 amount);

    /*//////////////////////////////////////////////////////////////
                                 FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /// @notice Owner balance of an id.
    /// @param owner The address of the owner.
    /// @param id The id of the token.
    /// @return amount The balance of the token.
    function balanceOf(address owner, uint256 id) external view returns (uint256 amount);

    /// @notice Spender allowance of an id.
    /// @param owner The address of the owner.
    /// @param spender The address of the spender.
    /// @param id The id of the token.
    /// @return amount The allowance of the token.
    function allowance(address owner, address spender, uint256 id) external view returns (uint256 amount);

    /// @notice Checks if a spender is approved by an owner as an operator
    /// @param owner The address of the owner.
    /// @param spender The address of the spender.
    /// @return approved The approval status.
    function isOperator(address owner, address spender) external view returns (bool approved);

    /// @notice Transfers an amount of an id from the caller to a receiver.
    /// @param receiver The address of the receiver.
    /// @param id The id of the token.
    /// @param amount The amount of the token.
    /// @return bool True, always, unless the function reverts
    function transfer(address receiver, uint256 id, uint256 amount) external returns (bool);

    /// @notice Transfers an amount of an id from a sender to a receiver.
    /// @param sender The address of the sender.
    /// @param receiver The address of the receiver.
    /// @param id The id of the token.
    /// @param amount The amount of the token.
    /// @return bool True, always, unless the function reverts
    function transferFrom(address sender, address receiver, uint256 id, uint256 amount) external returns (bool);

    /// @notice Approves an amount of an id to a spender.
    /// @param spender The address of the spender.
    /// @param id The id of the token.
    /// @param amount The amount of the token.
    /// @return bool True, always
    function approve(address spender, uint256 id, uint256 amount) external returns (bool);

    /// @notice Sets or removes an operator for the caller.
    /// @param operator The address of the operator.
    /// @param approved The approval status.
    /// @return bool True, always
    function setOperator(address operator, bool approved) external returns (bool);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {Currency} from "../types/Currency.sol";
import {PoolId} from "../types/PoolId.sol";
import {PoolKey} from "../types/PoolKey.sol";

/// @notice Interface for all protocol-fee related functions in the pool manager
interface IProtocolFees {
    /// @notice Thrown when protocol fee is set too high
    error ProtocolFeeTooLarge(uint24 fee);

    /// @notice Thrown when collectProtocolFees or setProtocolFee is not called by the controller.
    error InvalidCaller();

    /// @notice Thrown when collectProtocolFees is attempted on a token that is synced.
    error ProtocolFeeCurrencySynced();

    /// @notice Emitted when the protocol fee controller address is updated in setProtocolFeeController.
    event ProtocolFeeControllerUpdated(address indexed protocolFeeController);

    /// @notice Emitted when the protocol fee is updated for a pool.
    event ProtocolFeeUpdated(PoolId indexed id, uint24 protocolFee);

    /// @notice Given a currency address, returns the protocol fees accrued in that currency
    /// @param currency The currency to check
    /// @return amount The amount of protocol fees accrued in the currency
    function protocolFeesAccrued(Currency currency) external view returns (uint256 amount);

    /// @notice Sets the protocol fee for the given pool
    /// @param key The key of the pool to set a protocol fee for
    /// @param newProtocolFee The fee to set
    function setProtocolFee(PoolKey memory key, uint24 newProtocolFee) external;

    /// @notice Sets the protocol fee controller
    /// @param controller The new protocol fee controller
    function setProtocolFeeController(address controller) external;

    /// @notice Collects the protocol fees for a given recipient and currency, returning the amount collected
    /// @dev This will revert if the contract is unlocked
    /// @param recipient The address to receive the protocol fees
    /// @param currency The currency to withdraw
    /// @param amount The amount of currency to withdraw
    /// @return amountCollected The amount of currency successfully withdrawn
    function collectProtocolFees(address recipient, Currency currency, uint256 amount)
        external
        returns (uint256 amountCollected);

    /// @notice Returns the current protocol fee controller address
    /// @return address The current protocol fee controller address
    function protocolFeeController() external view returns (address);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @notice Interface for functions to access any storage slot in a contract
interface IExtsload {
    /// @notice Called by external contracts to access granular pool state
    /// @param slot Key of slot to sload
    /// @return value The value of the slot as bytes32
    function extsload(bytes32 slot) external view returns (bytes32 value);

    /// @notice Called by external contracts to access granular pool state
    /// @param startSlot Key of slot to start sloading from
    /// @param nSlots Number of slots to load into return value
    /// @return values List of loaded values.
    function extsload(bytes32 startSlot, uint256 nSlots) external view returns (bytes32[] memory values);

    /// @notice Called by external contracts to access sparse pool state
    /// @param slots List of slots to SLOAD from.
    /// @return values List of loaded values.
    function extsload(bytes32[] calldata slots) external view returns (bytes32[] memory values);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

/// @notice Interface for functions to access any transient storage slot in a contract
interface IExttload {
    /// @notice Called by external contracts to access transient storage of the contract
    /// @param slot Key of slot to tload
    /// @return value The value of the slot as bytes32
    function exttload(bytes32 slot) external view returns (bytes32 value);

    /// @notice Called by external contracts to access sparse transient pool state
    /// @param slots List of slots to tload
    /// @return values List of loaded values
    function exttload(bytes32[] calldata slots) external view returns (bytes32[] memory values);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title Minimal ERC20 interface for Uniswap
/// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3
interface IERC20Minimal {
    /// @notice Returns an account's balance in the token
    /// @param account The account for which to look up the number of tokens it has, i.e. its balance
    /// @return The number of tokens held by the account
    function balanceOf(address account) external view returns (uint256);

    /// @notice Transfers the amount of token from the `msg.sender` to the recipient
    /// @param recipient The account that will receive the amount transferred
    /// @param amount The number of tokens to send from the sender to the recipient
    /// @return Returns true for a successful transfer, false for an unsuccessful transfer
    function transfer(address recipient, uint256 amount) external returns (bool);

    /// @notice Returns the current allowance given to a spender by an owner
    /// @param owner The account of the token owner
    /// @param spender The account of the token spender
    /// @return The current allowance granted by `owner` to `spender`
    function allowance(address owner, address spender) external view returns (uint256);

    /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount`
    /// @param spender The account which will be allowed to spend a given amount of the owners tokens
    /// @param amount The amount of tokens allowed to be used by `spender`
    /// @return Returns true for a successful approval, false for unsuccessful
    function approve(address spender, uint256 amount) external returns (bool);

    /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender`
    /// @param sender The account from which the transfer will be initiated
    /// @param recipient The recipient of the transfer
    /// @param amount The amount of the transfer
    /// @return Returns true for a successful transfer, false for unsuccessful
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`.
    /// @param from The account from which the tokens were sent, i.e. the balance decreased
    /// @param to The account to which the tokens were sent, i.e. the balance increased
    /// @param value The amount of tokens that were transferred
    event Transfer(address indexed from, address indexed to, uint256 value);

    /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes.
    /// @param owner The account that approved spending of its tokens
    /// @param spender The account for which the spending allowance was modified
    /// @param value The new allowance from the owner to the spender
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title BitMath
/// @dev This library provides functionality for computing bit properties of an unsigned integer
/// @author Solady (https://github.com/Vectorized/solady/blob/8200a70e8dc2a77ecb074fc2e99a2a0d36547522/src/utils/LibBit.sol)
library BitMath {
    /// @notice Returns the index of the most significant bit of the number,
    ///     where the least significant bit is at index 0 and the most significant bit is at index 255
    /// @param x the value for which to compute the most significant bit, must be greater than 0
    /// @return r the index of the most significant bit
    function mostSignificantBit(uint256 x) internal pure returns (uint8 r) {
        require(x > 0);

        assembly ("memory-safe") {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020500060203020504000106050205030304010505030400000000))
        }
    }

    /// @notice Returns the index of the least significant bit of the number,
    ///     where the least significant bit is at index 0 and the most significant bit is at index 255
    /// @param x the value for which to compute the least significant bit, must be greater than 0
    /// @return r the index of the least significant bit
    function leastSignificantBit(uint256 x) internal pure returns (uint8 r) {
        require(x > 0);

        assembly ("memory-safe") {
            // Isolate the least significant bit.
            x := and(x, sub(0, x))
            // For the upper 3 bits of the result, use a De Bruijn-like lookup.
            // Credit to adhusson: https://blog.adhusson.com/cheap-find-first-set-evm/
            // forgefmt: disable-next-item
            r := shl(5, shr(252, shl(shl(2, shr(250, mul(x,
                0xb6db6db6ddddddddd34d34d349249249210842108c6318c639ce739cffffffff))),
                0x8040405543005266443200005020610674053026020000107506200176117077)))
            // For the lower 5 bits of the result, use a De Bruijn lookup.
            // forgefmt: disable-next-item
            r := or(r, byte(and(div(0xd76453e0, shr(r, x)), 0x1f),
                0x001f0d1e100c1d070f090b19131c1706010e11080a1a141802121b1503160405))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @notice Interface for the callback executed when an address unlocks the pool manager
interface IUnlockCallback {
    /// @notice Called by the pool manager on `msg.sender` when the manager is unlocked
    /// @param data The data that was passed to the call to unlock
    /// @return Any data that you want to be returned from the unlock call
    function unlockCallback(bytes calldata data) external returns (bytes memory);
}

File 35 of 39 : ImmutableState.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {IPoolManager} from "@uniswap/v4-core/src/interfaces/IPoolManager.sol";
import {IImmutableState} from "../interfaces/IImmutableState.sol";

/// @title Immutable State
/// @notice A collection of immutable state variables, commonly used across multiple contracts
contract ImmutableState is IImmutableState {
    /// @inheritdoc IImmutableState
    IPoolManager public immutable poolManager;

    constructor(IPoolManager _poolManager) {
        poolManager = _poolManager;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
    /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
    function mulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = a * b
            // Compute the product mod 2**256 and mod 2**256 - 1
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2**256 + prod0
            uint256 prod0 = a * b; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly ("memory-safe") {
                let mm := mulmod(a, b, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Make sure the result is less than 2**256.
            // Also prevents denominator == 0
            require(denominator > prod1);

            // Handle non-overflow cases, 256 by 256 division
            if (prod1 == 0) {
                assembly ("memory-safe") {
                    result := div(prod0, denominator)
                }
                return result;
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0]
            // Compute remainder using mulmod
            uint256 remainder;
            assembly ("memory-safe") {
                remainder := mulmod(a, b, denominator)
            }
            // Subtract 256 bit number from 512 bit number
            assembly ("memory-safe") {
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator
            // Compute largest power of two divisor of denominator.
            // Always >= 1.
            uint256 twos = (0 - denominator) & denominator;
            // Divide denominator by power of two
            assembly ("memory-safe") {
                denominator := div(denominator, twos)
            }

            // Divide [prod1 prod0] by the factors of two
            assembly ("memory-safe") {
                prod0 := div(prod0, twos)
            }
            // Shift in bits from prod1 into prod0. For this we need
            // to flip `twos` such that it is 2**256 / twos.
            // If twos is zero, then it becomes one
            assembly ("memory-safe") {
                twos := add(div(sub(0, twos), twos), 1)
            }
            prod0 |= prod1 * twos;

            // Invert denominator mod 2**256
            // Now that denominator is an odd number, it has an inverse
            // modulo 2**256 such that denominator * inv = 1 mod 2**256.
            // Compute the inverse by starting with a seed that is correct
            // correct for four bits. That is, denominator * inv = 1 mod 2**4
            uint256 inv = (3 * denominator) ^ 2;
            // Now use Newton-Raphson iteration to improve the precision.
            // Thanks to Hensel's lifting lemma, this also works in modular
            // arithmetic, doubling the correct bits in each step.
            inv *= 2 - denominator * inv; // inverse mod 2**8
            inv *= 2 - denominator * inv; // inverse mod 2**16
            inv *= 2 - denominator * inv; // inverse mod 2**32
            inv *= 2 - denominator * inv; // inverse mod 2**64
            inv *= 2 - denominator * inv; // inverse mod 2**128
            inv *= 2 - denominator * inv; // inverse mod 2**256

            // Because the division is now exact we can divide by multiplying
            // with the modular inverse of denominator. This will give us the
            // correct result modulo 2**256. Since the preconditions guarantee
            // that the outcome is less than 2**256, this is the final result.
            // We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inv;
            return result;
        }
    }

    /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    function mulDivRoundingUp(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            result = mulDiv(a, b, denominator);
            if (mulmod(a, b, denominator) != 0) {
                require(++result > 0);
            }
        }
    }
}

File 37 of 39 : FixedPoint128.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title FixedPoint128
/// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
library FixedPoint128 {
    uint256 internal constant Q128 = 0x100000000000000000000000000000000;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title Math library for liquidity
library LiquidityMath {
    /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows
    /// @param x The liquidity before change
    /// @param y The delta by which liquidity should be changed
    /// @return z The liquidity delta
    function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) {
        assembly ("memory-safe") {
            z := add(and(x, 0xffffffffffffffffffffffffffffffff), signextend(15, y))
            if shr(128, z) {
                // revert SafeCastOverflow()
                mstore(0, 0x93dafdf1)
                revert(0x1c, 0x04)
            }
        }
    }
}

File 39 of 39 : IImmutableState.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {IPoolManager} from "@uniswap/v4-core/src/interfaces/IPoolManager.sol";

/// @title IImmutableState
/// @notice Interface for the ImmutableState contract
interface IImmutableState {
    /// @notice The Uniswap v4 PoolManager contract
    function poolManager() external view returns (IPoolManager);
}

Settings
{
  "remappings": [
    "@uniswap/v4-core/=lib/v4-core/",
    "forge-gas-snapshot/=lib/v4-core/lib/forge-gas-snapshot/src/",
    "forge-std/=lib/v4-core/lib/forge-std/src/",
    "permit2/=lib/v4-periphery/lib/permit2/",
    "solmate/=lib/v4-core/lib/solmate/",
    "v4-core/=lib/v4-core/",
    "v4-periphery/=lib/v4-periphery/",
    "openzeppelin/=lib/v4-core/lib/openzeppelin-contracts/contracts/",
    "@openzeppelin/uniswap-hooks/=lib/uniswap-hooks/",
    "@ensdomains/=lib/v4-core/node_modules/@ensdomains/",
    "@openzeppelin/contracts/=lib/v4-core/lib/openzeppelin-contracts/contracts/",
    "ds-test/=lib/v4-core/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/v4-core/lib/openzeppelin-contracts/lib/erc4626-tests/",
    "hardhat/=lib/v4-core/node_modules/hardhat/",
    "openzeppelin-contracts/=lib/v4-core/lib/openzeppelin-contracts/",
    "uniswap-hooks/=lib/uniswap-hooks/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": true,
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"string","name":"name_","type":"string"},{"internalType":"string","name":"symbol_","type":"string"},{"internalType":"uint256","name":"maxSupply_","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]

0x60806040523461039557610a188038038061001981610399565b9283398101906060818303126103955780516001600160401b03811161039557826100459183016103be565b60208201519092906001600160401b038111610395576040916100699184016103be565b91015182516001600160401b0381116102a657600354600181811c9116801561038b575b602082101461028857601f8111610328575b506020601f82116001146102c557819293945f926102ba575b50508160011b915f199060031b1c1916176003555b81516001600160401b0381116102a657600454600181811c9116801561029c575b602082101461028857601f8111610225575b50602092601f82116001146101c457928192935f926101b9575b50508160011b915f199060031b1c1916176004555b33156101a65760025481810180911161019257600255335f525f60205260405f208181540190556040519081525f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60203393a360405161060890816104108239f35b634e487b7160e01b5f52601160045260245ffd5b63ec442f0560e01b5f525f60045260245ffd5b015190505f8061011a565b601f1982169360045f52805f20915f5b86811061020d57508360019596106101f5575b505050811b0160045561012f565b01515f1960f88460031b161c191690555f80806101e7565b919260206001819286850151815501940192016101d4565b60045f527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b601f830160051c8101916020841061027e575b601f0160051c01905b8181106102735750610100565b5f8155600101610266565b909150819061025d565b634e487b7160e01b5f52602260045260245ffd5b90607f16906100ee565b634e487b7160e01b5f52604160045260245ffd5b015190505f806100b8565b601f1982169060035f52805f20915f5b818110610310575095836001959697106102f8575b505050811b016003556100cd565b01515f1960f88460031b161c191690555f80806102ea565b9192602060018192868b0151815501940192016102d5565b60035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b601f830160051c81019160208410610381575b601f0160051c01905b818110610376575061009f565b5f8155600101610369565b9091508190610360565b90607f169061008d565b5f80fd5b6040519190601f01601f191682016001600160401b038111838210176102a657604052565b81601f82011215610395578051906001600160401b0382116102a6576103ed601f8301601f1916602001610399565b928284526020838301011161039557815f9260208093018386015e830101529056fe6080806040526004361015610012575f80fd5b5f3560e01c90816306fdde03146103f057508063095ea7b31461036e57806318160ddd1461035157806323b872dd14610271578063313ce5671461025657806370a082311461021f57806395d89b4114610104578063a9059cbb146100d35763dd62ed3e1461007f575f80fd5b346100cf5760403660031901126100cf576100986104e9565b6100a06104ff565b6001600160a01b039182165f908152600160209081526040808320949093168252928352819020549051908152f35b5f80fd5b346100cf5760403660031901126100cf576100f96100ef6104e9565b6024359033610515565b602060405160018152f35b346100cf575f3660031901126100cf576040515f6004548060011c90600181168015610215575b602083108114610201578285529081156101e55750600114610190575b50819003601f01601f191681019067ffffffffffffffff82118183101761017c57610178829182604052826104bf565b0390f35b634e487b7160e01b5f52604160045260245ffd5b905060045f527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b5f905b8282106101cf57506020915082010182610148565b60018160209254838588010152019101906101ba565b90506020925060ff191682840152151560051b82010182610148565b634e487b7160e01b5f52602260045260245ffd5b91607f169161012b565b346100cf5760203660031901126100cf576001600160a01b036102406104e9565b165f525f602052602060405f2054604051908152f35b346100cf575f3660031901126100cf57602060405160128152f35b346100cf5760603660031901126100cf5761028a6104e9565b6102926104ff565b6001600160a01b0382165f8181526001602081815260408084203385529091529091205491936044359392909181016102d1575b506100f99350610515565b838110610336578415610323573315610310576100f9945f52600160205260405f2060018060a01b0333165f526020528360405f2091039055846102c6565b634a1406b160e11b5f525f60045260245ffd5b63e602df0560e01b5f525f60045260245ffd5b8390637dc7a0d960e11b5f523360045260245260445260645ffd5b346100cf575f3660031901126100cf576020600254604051908152f35b346100cf5760403660031901126100cf576103876104e9565b602435903315610323576001600160a01b031690811561031057335f52600160205260405f20825f526020528060405f20556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b346100cf575f3660031901126100cf575f6003548060011c906001811680156104b5575b602083108114610201578285529081156101e557506001146104605750819003601f01601f191681019067ffffffffffffffff82118183101761017c57610178829182604052826104bf565b905060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5f905b82821061049f57506020915082010182610148565b600181602092548385880101520191019061048a565b91607f1691610414565b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b03821682036100cf57565b602435906001600160a01b03821682036100cf57565b6001600160a01b03169081156105bf576001600160a01b03169182156105ac57815f525f60205260405f205481811061059357817fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef92602092855f525f84520360405f2055845f525f825260405f20818154019055604051908152a3565b8263391434e360e21b5f5260045260245260445260645ffd5b63ec442f0560e01b5f525f60045260245ffd5b634b637e8f60e11b5f525f60045260245ffdfea264697066735822122029a5b88de93410ac08a727ee437d69229f6f85828b366e25406834930adf776064736f6c634300081a0033000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000a00000000000000000000000000000000000000000033b2e3c9fd0803ce80000000000000000000000000000000000000000000000000000000000000000000007426974636f696e0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000034254430000000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x6080806040526004361015610012575f80fd5b5f3560e01c90816306fdde03146103f057508063095ea7b31461036e57806318160ddd1461035157806323b872dd14610271578063313ce5671461025657806370a082311461021f57806395d89b4114610104578063a9059cbb146100d35763dd62ed3e1461007f575f80fd5b346100cf5760403660031901126100cf576100986104e9565b6100a06104ff565b6001600160a01b039182165f908152600160209081526040808320949093168252928352819020549051908152f35b5f80fd5b346100cf5760403660031901126100cf576100f96100ef6104e9565b6024359033610515565b602060405160018152f35b346100cf575f3660031901126100cf576040515f6004548060011c90600181168015610215575b602083108114610201578285529081156101e55750600114610190575b50819003601f01601f191681019067ffffffffffffffff82118183101761017c57610178829182604052826104bf565b0390f35b634e487b7160e01b5f52604160045260245ffd5b905060045f527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b5f905b8282106101cf57506020915082010182610148565b60018160209254838588010152019101906101ba565b90506020925060ff191682840152151560051b82010182610148565b634e487b7160e01b5f52602260045260245ffd5b91607f169161012b565b346100cf5760203660031901126100cf576001600160a01b036102406104e9565b165f525f602052602060405f2054604051908152f35b346100cf575f3660031901126100cf57602060405160128152f35b346100cf5760603660031901126100cf5761028a6104e9565b6102926104ff565b6001600160a01b0382165f8181526001602081815260408084203385529091529091205491936044359392909181016102d1575b506100f99350610515565b838110610336578415610323573315610310576100f9945f52600160205260405f2060018060a01b0333165f526020528360405f2091039055846102c6565b634a1406b160e11b5f525f60045260245ffd5b63e602df0560e01b5f525f60045260245ffd5b8390637dc7a0d960e11b5f523360045260245260445260645ffd5b346100cf575f3660031901126100cf576020600254604051908152f35b346100cf5760403660031901126100cf576103876104e9565b602435903315610323576001600160a01b031690811561031057335f52600160205260405f20825f526020528060405f20556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b346100cf575f3660031901126100cf575f6003548060011c906001811680156104b5575b602083108114610201578285529081156101e557506001146104605750819003601f01601f191681019067ffffffffffffffff82118183101761017c57610178829182604052826104bf565b905060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5f905b82821061049f57506020915082010182610148565b600181602092548385880101520191019061048a565b91607f1691610414565b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b03821682036100cf57565b602435906001600160a01b03821682036100cf57565b6001600160a01b03169081156105bf576001600160a01b03169182156105ac57815f525f60205260405f205481811061059357817fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef92602092855f525f84520360405f2055845f525f825260405f20818154019055604051908152a3565b8263391434e360e21b5f5260045260245260445260645ffd5b63ec442f0560e01b5f525f60045260245ffd5b634b637e8f60e11b5f525f60045260245ffdfea264697066735822122029a5b88de93410ac08a727ee437d69229f6f85828b366e25406834930adf776064736f6c634300081a0033

Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.