ETH Price: $3,203.88 (-8.09%)
 

Overview

ETH Balance

0 ETH

ETH Value

$0.00

Token Holdings

More Info

Private Name Tags

TokenTracker

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Redeem380434332025-11-11 15:50:132 days ago1762876213IN
0xa979E1d7...5EA75DE36
0 ETH0.000001120.01662475
Redeem380325722025-11-11 9:48:112 days ago1762854491IN
0xa979E1d7...5EA75DE36
0 ETH0.000000390.00591816
Redeem380012842025-11-10 16:25:153 days ago1762791915IN
0xa979E1d7...5EA75DE36
0 ETH0.000000830.01227809
Redeem380006532025-11-10 16:04:133 days ago1762790653IN
0xa979E1d7...5EA75DE36
0 ETH0.000000640.00946524
Redeem379998812025-11-10 15:38:293 days ago1762789109IN
0xa979E1d7...5EA75DE36
0 ETH0.000000480.00561316
Redeem379914892025-11-10 10:58:453 days ago1762772325IN
0xa979E1d7...5EA75DE36
0 ETH0.000000130.0019221
Redeem379899942025-11-10 10:08:553 days ago1762769335IN
0xa979E1d7...5EA75DE36
0 ETH0.00000010.00147947
Redeem379829002025-11-10 6:12:274 days ago1762755147IN
0xa979E1d7...5EA75DE36
0 ETH0.000000040.00064234
End Pools379808392025-11-10 5:03:454 days ago1762751025IN
0xa979E1d7...5EA75DE36
0 ETH0.000000070.00091625
Fill Orders379081992025-11-08 12:42:255 days ago1762605745IN
0xa979E1d7...5EA75DE36
0 ETH0.000000360.00111832
Fill Orders378150982025-11-06 8:59:038 days ago1762419543IN
0xa979E1d7...5EA75DE36
0 ETH0.000002110.0096911
Redeem378150672025-11-06 8:58:018 days ago1762419481IN
0xa979E1d7...5EA75DE36
0 ETH0.000000660.01046669
Redeem378150622025-11-06 8:57:518 days ago1762419471IN
0xa979E1d7...5EA75DE36
0 ETH0.000000720.01067252
Fill Orders377921552025-11-05 20:14:178 days ago1762373657IN
0xa979E1d7...5EA75DE36
0 ETH0.000003040.01397098
Redeem377424902025-11-04 16:38:479 days ago1762274327IN
0xa979E1d7...5EA75DE36
0 ETH0.000003080.0369499
Redeem377424872025-11-04 16:38:419 days ago1762274321IN
0xa979E1d7...5EA75DE36
0 ETH0.000003090.03707584
Redeem377424862025-11-04 16:38:399 days ago1762274319IN
0xa979E1d7...5EA75DE36
0 ETH0.000002360.03707154
Redeem377025492025-11-03 18:27:2510 days ago1762194445IN
0xa979E1d7...5EA75DE36
0 ETH0.000000660.00982754
Fill Orders377000642025-11-03 17:04:3510 days ago1762189475IN
0xa979E1d7...5EA75DE36
0 ETH0.000001520.00690194
Redeem377000512025-11-03 17:04:0910 days ago1762189449IN
0xa979E1d7...5EA75DE36
0 ETH0.000000480.00703785
Redeem376971832025-11-03 15:28:3310 days ago1762183713IN
0xa979E1d7...5EA75DE36
0 ETH0.000006940.08181923
Fill Orders376916382025-11-03 12:23:4310 days ago1762172623IN
0xa979E1d7...5EA75DE36
0 ETH0.000011170.05129603
Redeem376861772025-11-03 9:21:4110 days ago1762161701IN
0xa979E1d7...5EA75DE36
0 ETH0.000001390.02066525
Fill Orders376852542025-11-03 8:50:5511 days ago1762159855IN
0xa979E1d7...5EA75DE36
0 ETH0.000002580.01143399
Redeem376852372025-11-03 8:50:2111 days ago1762159821IN
0xa979E1d7...5EA75DE36
0 ETH0.000000780.01117242
View all transactions

Parent Transaction Hash Block From To
View All Internal Transactions

Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
SilicaPools

Compiler Version
v0.8.27+commit.40a35a09

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion
File 1 of 40 : SilicaPools.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/**
 *      _    _ _    _           _
 *     / \  | | | _(_)_ __ ___ (_)_   _  __ _
 *    / _ \ | | |/ / | '_ ` _ \| | | | |/ _` |
 *   / ___ \| |   <| | | | | | | | |_| | (_| |
 *  /_/__ \_\_|_|\_\_|_| |_| |_|_|\__, |\__,_|_
 *  / ___|(_) (_) ___ __ _  |  _ \|___/  ___ | |___
 *  \___ \| | | |/ __/ _` | | |_) / _ \ / _ \| / __|
 *   ___) | | | | (_| (_| | |  __/ (_) | (_) | \__ \
 *  |____/|_|_|_|\___\__,_| |_|   \___/ \___/|_|___/
 */
import {Ownable} from "@openzeppelin/access/Ownable.sol";
import {ERC20} from "@openzeppelin/token/ERC20/ERC20.sol";
import {IERC20} from "@openzeppelin/token/ERC20/IERC20.sol";
import {SafeCast} from "@openzeppelin/utils/math/SafeCast.sol";
import {ERC1155} from "@openzeppelin/token/ERC1155/ERC1155.sol";
import {ECDSA} from "@openzeppelin/utils/cryptography/ECDSA.sol";
import {EIP712} from "@openzeppelin/utils/cryptography/EIP712.sol";
import {Ownable2Step} from "@openzeppelin/access/Ownable2Step.sol";
import {ReentrancyGuard} from "@openzeppelin/utils/ReentrancyGuard.sol";
import {SafeERC20} from "@openzeppelin/token/ERC20/utils/SafeERC20.sol";
import {MessageHashUtils} from "@openzeppelin/utils/cryptography/MessageHashUtils.sol";

import {PoolMaths} from "../libraries/PoolMaths.sol";
import {ISilicaPools} from "./interfaces/ISilicaPools.sol";
import {ISilicaIndex} from "../index/interfaces/ISilicaIndex.sol";

contract SilicaPools is ISilicaPools, ERC1155, EIP712, Ownable2Step, ReentrancyGuard {
    using SafeCast for uint256;
    using SafeCast for uint128;
    using SafeERC20 for IERC20;

    /*//////////////////////////////////////////////////////////////
                            STATE VARIABLES
    //////////////////////////////////////////////////////////////*/

    bytes32 constant SILICA_POOL_TYPEHASH = keccak256(
        "PoolParams(uint128 floor,uint128 cap,address index,uint48 targetStartTimestamp,uint48 targetEndTimestamp,address payoutToken)"
    ); // The typehash for the PoolParams struct

    bytes32 constant SILICA_ORDER_TYPEHASH = keccak256(
        "SilicaOrder(address maker,address taker,uint48 expiry,address offeredUpfrontToken,uint128 offeredUpfrontAmount,uint128 offeredLongShares,PoolParams offeredLongSharesParams,address requestedUpfrontToken,uint128 requestedUpfrontAmount,uint128 requestedLongShares,PoolParams requestedLongSharesParams)PoolParams(uint128 floor,uint128 cap,address index,uint48 targetStartTimestamp,uint48 targetEndTimestamp,address payoutToken)"
    ); // The typehash for the SilicaOrder struct

    bytes32 public constant TOKENID_SALT = bytes32(uint256(0xAC1D));
    // The salt for token ID derivation

    // Mint fee = mintFeeBps / INVERSE_BASIS_POINT
    // 1 basis point = 0.01% of the collateral
    // 10_000 basis points make up 100%
    uint256 public constant INVERSE_BASIS_POINT = 10_000;

    uint256 private sFillFeeBps; // The fee in basis points for minting long and short tokens
    uint256 public constant MAX_FILL_FEE_BPS = 1000; // 10%
    address private sAlkimiyaTreasury; // The address to which mint fees are sent

    mapping(bytes32 poolHash => PoolState state) private sPoolState;
    mapping(bytes32 orderHash => bool isCancelled) private sOrderCancelled;
    mapping(bytes32 orderHash => uint256 fraction) private sFilledFraction;
    mapping(address silicaIndex => bool isWhitelisted) private isIndexWhitelisted;

    uint256 public sBountyGracePeriod; // The grace period before bounties are paid out, in seconds
    uint256 public sMaxBountyFraction; // The maximum fraction of collateral that can be paid out as a bounty
    uint256 public sBountyFractionIncreasePerSecond; // The rate at which the bounty fraction increases per second, until it reached sMaxBountyFraction.

    bool public paused;
    bool public partialFillsEnabled = false;

    constructor(
        uint256 startFeeBps,
        address initialOwner,
        address alkimiyaTreasury,
        uint256 gracePeriod,
        uint256 maxBountyFrac,
        uint256 bountyIncreasePerSecond
    ) ERC1155("") Ownable(initialOwner) EIP712("SilicaPools", "1") {
        assert(alkimiyaTreasury != address(0));
        sAlkimiyaTreasury = alkimiyaTreasury;

        assert(startFeeBps <= MAX_FILL_FEE_BPS);
        sFillFeeBps = startFeeBps;

        sBountyGracePeriod = gracePeriod;
        sMaxBountyFraction = maxBountyFrac;
        sBountyFractionIncreasePerSecond = bountyIncreasePerSecond;

        emit SilicaPools__FillFeeChanged(startFeeBps);
        emit SilicaPools__GracePeriodChanged(sBountyGracePeriod);
        emit SilicaPools__TreasuryAddressChanged(alkimiyaTreasury);
        emit SilicaPools__MaxBountyFractionChanged(sMaxBountyFraction);
        emit SilicaPools__BountyIncreaseRateChanged(sBountyFractionIncreasePerSecond);
    }

    /*//////////////////////////////////////////////////////////////
                            OWNER FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /// @inheritdoc ISilicaPools
    function setFillFeeBps(uint256 newFillFeeBps) external onlyOwner {
        if (newFillFeeBps > MAX_FILL_FEE_BPS) {
            revert("Cannot exceed max fee BPS");
        }
        sFillFeeBps = newFillFeeBps;
        emit SilicaPools__FillFeeChanged(newFillFeeBps);
    }

    /// @inheritdoc ISilicaPools
    function setTreasuryAddress(address newTreasury) external onlyOwner {
        assert(newTreasury != address(0));
        sAlkimiyaTreasury = newTreasury;
        emit SilicaPools__TreasuryAddressChanged(newTreasury);
    }

    /// @inheritdoc ISilicaPools
    function setBountyGracePeriod(uint256 newGracePeriod) external onlyOwner {
        sBountyGracePeriod = newGracePeriod;
        emit SilicaPools__GracePeriodChanged(sBountyGracePeriod);
    }

    /// @inheritdoc ISilicaPools
    function setMaxBountyFraction(uint256 newMaxFraction) external onlyOwner {
        sMaxBountyFraction = newMaxFraction;
        emit SilicaPools__MaxBountyFractionChanged(sMaxBountyFraction);
    }

    /// @inheritdoc ISilicaPools
    function setBountyFractionIncreasePerSecond(uint256 newIncreaseAmount) external onlyOwner {
        sBountyFractionIncreasePerSecond = newIncreaseAmount;
        emit SilicaPools__BountyIncreaseRateChanged(sBountyFractionIncreasePerSecond);
    }

    /// @inheritdoc ISilicaPools
    function pause() external onlyOwner {
        paused = true;
        emit SilicaPools__PauseProtocol();
    }

    /// @inheritdoc ISilicaPools
    function unpause() external onlyOwner {
        paused = false;
        emit SilicaPools__UnpauseProtocol();
    }

    function enablePartialFills() external onlyOwner {
        partialFillsEnabled = true;
    }

    function disablePartialFills() external onlyOwner {
        partialFillsEnabled = false;
    }

    function whitelistSilicaIndex(address addressToWhitelist) external onlyOwner {
        ISilicaIndex index = ISilicaIndex(addressToWhitelist);
        require(isIndexWhitelisted[address(index)] == false, "already whitelisted");
        isIndexWhitelisted[address(index)] = true;
        emit SilicaIndexWhitelisted(address(index));
    }

    function blacklistSilicaIndex(address addressToBlacklist) external onlyOwner {
        ISilicaIndex index = ISilicaIndex(addressToBlacklist);
        require(isIndexWhitelisted[address(index)] == true, "already blacklisted");
        isIndexWhitelisted[address(index)] = false;
        emit SilicaIndexBlacklisted(address(index));
    }

    /*//////////////////////////////////////////////////////////////
                          EXTERNAL FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /// @inheritdoc ISilicaPools
    function startPools(PoolParams[] calldata poolParams) external {
        for (uint256 i = 0; i < poolParams.length; ++i) {
            startPool(poolParams[i]);
        }
    }

    /// @dev calls `_collateralizedMint` with `msg.sender` as `payer`
    /// @inheritdoc ISilicaPools
    function collateralizedMint(
        PoolParams calldata poolParams,
        uint256 shares,
        address longRecipient,
        address shortRecipient
    ) external {
        if (paused) {
            revert SilicaPools__Paused();
        }
        SilicaPools.SilicaOrder memory zeroOrder;
        _collateralizedMint(
            poolParams, _hashOrder(zeroOrder, _domainSeparatorV4()), shares, msg.sender, longRecipient, shortRecipient
        );
    }

    /// @inheritdoc ISilicaPools
    function maxCollateralRefund(PoolParams[] calldata poolParams) external nonReentrant {
        for (uint256 i; i < poolParams.length; ++i) {
            bytes32 poolHash = hashPool(poolParams[i]);

            uint256 longBalance = balanceOf(msg.sender, toLongTokenId(poolHash));
            uint256 shortBalance = balanceOf(msg.sender, toShortTokenId(poolHash));

            _collateralRefund(poolParams[i], longBalance < shortBalance ? longBalance : shortBalance);
        }
    }

    /// @inheritdoc ISilicaPools
    function cancelOrders(SilicaOrder[] calldata orders) external {
        for (uint256 i = 0; i < orders.length; ++i) {
            SilicaOrder calldata order = orders[i];

            if (order.maker != msg.sender) {
                revert SilicaPools__InvalidCaller(msg.sender, order.maker);
            }

            bytes32 orderHash = hashOrder(order, _domainSeparatorV4());

            sOrderCancelled[orderHash] = true;
            emit SilicaPools__OrderCancelled(orderHash);
        }
    }

    /// @inheritdoc ISilicaPools
    function fillOrders(SilicaOrder[] calldata orders, bytes[] calldata signatures, uint256[] calldata fractions)
        external
    {
        if (orders.length != signatures.length || orders.length != fractions.length) {
            revert SilicaPools__ArrayLengthMismatch();
        }

        for (uint256 i = 0; i < orders.length; ++i) {
            fillOrder(orders[i], signatures[i], fractions[i]);
        }
    }

    /// @inheritdoc ISilicaPools
    function endPools(PoolParams[] calldata poolParams) external {
        for (uint256 i = 0; i < poolParams.length; ++i) {
            endPool(poolParams[i]);
        }
    }

    /// @inheritdoc ISilicaPools
    function redeem(PoolParams[] calldata longPoolParams, PoolParams[] calldata shortPoolParams) external {
        for (uint256 i = 0; i < longPoolParams.length; ++i) {
            redeemLong(longPoolParams[i]);
        }
        for (uint256 i = 0; i < shortPoolParams.length; ++i) {
            redeemShort(shortPoolParams[i]);
        }
    }

    /*//////////////////////////////////////////////////////////////
                        EXTERNAL VIEW FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /// @inheritdoc ISilicaPools
    function poolState(bytes32 poolHash) external view returns (PoolState memory) {
        return sPoolState[poolHash];
    }

    /// @inheritdoc ISilicaPools
    function startBounty(PoolParams[] calldata poolParams) external view returns (uint256[] memory) {
        uint256[] memory bounties = new uint256[](poolParams.length);
        for (uint256 i = 0; i < poolParams.length; ++i) {
            bounties[i] = _startBounty(poolParams[i]);
        }
        return bounties;
    }

    /// @inheritdoc ISilicaPools
    function endBounty(PoolParams[] calldata poolParams) external view returns (uint256[] memory) {
        uint256[] memory bounties = new uint256[](poolParams.length);
        for (uint256 i = 0; i < poolParams.length; ++i) {
            bounties[i] = _endBounty(poolParams[i]);
        }
        return bounties;
    }

    /// @inheritdoc ISilicaPools
    function viewRedeemShort(PoolParams calldata shortParams, address account)
        external
        view
        returns (uint256 expectedPayout)
    {
        bytes32 poolHash = hashPool(shortParams);
        PoolState storage sState = sPoolState[poolHash];

        if (sState.actualEndTimestamp == 0) {
            revert SilicaPools__PoolNotEnded(poolHash);
        }

        uint256 shortTokenId = toShortTokenId(poolHash);
        uint256 shortSharesBalance = balanceOf(account, shortTokenId);

        expectedPayout = PoolMaths.shortPayout(shortParams, sState, shortSharesBalance);
    }

    /// @inheritdoc ISilicaPools
    function viewRedeemLong(PoolParams calldata longParams, address account)
        external
        view
        returns (uint256 expectedPayout)
    {
        bytes32 poolHash = hashPool(longParams);
        PoolState storage sState = sPoolState[poolHash];

        if (sState.actualEndTimestamp == 0) {
            revert SilicaPools__PoolNotEnded(poolHash);
        }

        uint256 longTokenId = toLongTokenId(poolHash);
        uint256 longSharesBalance = balanceOf(account, longTokenId);

        expectedPayout = PoolMaths.longPayout(longParams, sState, longSharesBalance);
    }

    /// @inheritdoc ISilicaPools
    function viewCollateralRefund(PoolParams[] calldata poolParams, uint256[] calldata shares)
        external
        view
        returns (uint256[] memory expectedRefunds)
    {
        if (poolParams.length != shares.length) {
            revert SilicaPools__ArrayLengthMismatch();
        }

        expectedRefunds = new uint256[](poolParams.length);
        for (uint256 i; i < poolParams.length; ++i) {
            bytes32 poolHash = hashPool(poolParams[i]);
            ISilicaPools.PoolState storage sState = sPoolState[poolHash];

            uint256 refundCollateral = (uint256(sState.collateralMinted) * shares[i]) / uint256(sState.sharesMinted);

            expectedRefunds[i] = refundCollateral;
        }
    }

    /// @inheritdoc ISilicaPools
    function viewMaxCollateralRefund(PoolParams[] calldata poolParams, address[] calldata accounts)
        external
        view
        returns (uint256[] memory expectedRefund)
    {
        if (poolParams.length != accounts.length) {
            revert SilicaPools__ArrayLengthMismatch();
        }

        expectedRefund = new uint256[](poolParams.length);

        for (uint256 i; i < poolParams.length; ++i) {
            bytes32 poolHash = hashPool(poolParams[i]);

            uint256 longBalance = balanceOf(msg.sender, toLongTokenId(poolHash));
            uint256 shortBalance = balanceOf(msg.sender, toShortTokenId(poolHash));

            ISilicaPools.PoolState storage sState = sPoolState[poolHash];

            if (longBalance < shortBalance) {
                expectedRefund[i] = (uint256(sState.collateralMinted) * longBalance) / uint256(sState.sharesMinted);
            } else {
                expectedRefund[i] = (uint256(sState.collateralMinted) * shortBalance) / uint256(sState.sharesMinted);
            }
        }
    }

    /// @inheritdoc ISilicaPools
    function fillFeeBps() external view returns (uint256) {
        return sFillFeeBps;
    }

    /// @inheritdoc ISilicaPools
    function treasuryAddress() external view returns (address) {
        return sAlkimiyaTreasury;
    }

    /// @inheritdoc ISilicaPools
    function bountyGracePeriod() external view returns (uint256) {
        return sBountyGracePeriod;
    }

    /// @inheritdoc ISilicaPools
    function maxBountyFraction() external view returns (uint256) {
        return sMaxBountyFraction;
    }

    /// @inheritdoc ISilicaPools
    function bountyFractionIncreasePerSecond() external view returns (uint256) {
        return sBountyFractionIncreasePerSecond;
    }

    /// @inheritdoc ISilicaPools
    function domainSeparatorV4() external view returns (bytes32) {
        return _domainSeparatorV4();
    }

    /// @inheritdoc ISilicaPools
    function orderCancelled(bytes32 orderHash) external view returns (bool) {
        return sOrderCancelled[orderHash];
    }

    /*//////////////////////////////////////////////////////////////
                           PUBLIC FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /// @notice Starts the pool that matches the given parameters.
    /// @notice Records the starting `ISilicaIndex` state for any of
    ///         the specified pools which have not already been started.
    ///         Caller will be paid a bounty for each pool which was not
    ///         already started if called after the grace period.
    /// @dev The pool must not have already started.
    /// @dev MUST emit a `PoolStarted` event.
    /// @dev Can only be called at or after the pools target start timestamp.
    /// @param poolParams The paramter struct for the associated pool
    function startPool(PoolParams calldata poolParams) public onlyOwner onlyWhitelistedIndex(poolParams.index) {
        bytes32 poolHash = hashPool(poolParams);
        PoolState storage sState = sPoolState[poolHash];

        ISilicaIndex index = ISilicaIndex(poolParams.index);

        if (block.timestamp < poolParams.targetStartTimestamp) {
            revert SilicaPools__TooEarlyToStart(block.timestamp, poolParams.targetStartTimestamp);
        }
        if (sState.actualStartTimestamp != 0) {
            revert SilicaPools__PoolAlreadyStarted(poolHash);
        }

        sState.actualStartTimestamp = uint48(block.timestamp);

        sState.indexShares = uint128(index.shares());
        sState.indexInitialBalance = uint128(index.balance());

        uint256 startBountyAmount = _startBounty(poolParams);

        sState.collateralMinted -= uint128(startBountyAmount);

        SafeERC20.safeTransfer(IERC20(poolParams.payoutToken), msg.sender, startBountyAmount);
        emit SilicaPools__BountyPaid(poolHash, startBountyAmount, msg.sender);

        emit SilicaPools__PoolStarted(
            poolHash,
            poolParams.floor,
            poolParams.cap,
            poolParams.targetStartTimestamp,
            poolParams.targetEndTimestamp,
            address(index),
            poolParams.payoutToken,
            sState.indexShares,
            sState.indexInitialBalance,
            toLongTokenId(poolHash),
            toShortTokenId(poolHash)
        );
    }

    /// @notice Ends the pool that matches the given parameters.
    /// @notice Records the ending `ISilicaIndex` state for the pool.
    ///         Caller will be paid a bounty for each pool which was not
    ///         already ended if called after the grace period.
    /// @dev The pool must not have already ended.
    /// @dev Can only be called at or after the pools target end timestamp.
    /// @dev MUST emit a `PoolEnded` event.
    /// @param poolParams The paramter struct for the associated pool
    function endPool(PoolParams calldata poolParams) public onlyOwner onlyWhitelistedIndex(poolParams.index) {
        bytes32 poolHash = hashPool(poolParams);
        PoolState storage sState = sPoolState[poolHash];

        ISilicaIndex index = ISilicaIndex(poolParams.index);

        if (sState.actualEndTimestamp != 0) {
            revert SilicaPools__PoolAlreadyEnded(poolHash);
        }
        if (block.timestamp < poolParams.targetEndTimestamp) {
            revert SilicaPools__TooEarlyToEnd(block.timestamp, poolParams.targetEndTimestamp);
        }
        uint256 indexBalanceAtEnd = index.balance();
        sState.balanceChangePerShare = uint128(
            PoolMaths.balanceChangePerShare(
                indexBalanceAtEnd,
                sState.indexInitialBalance,
                sState.indexShares,
                index.decimals(),
                poolParams.floor,
                poolParams.cap
            )
        );

        sState.actualEndTimestamp = uint48(block.timestamp);

        uint256 endBountyAmount = _endBounty(poolParams);
        sState.collateralMinted -= uint128(endBountyAmount);

        SafeERC20.safeTransfer(IERC20(poolParams.payoutToken), msg.sender, endBountyAmount);
        emit SilicaPools__BountyPaid(poolHash, endBountyAmount, msg.sender);

        emit SilicaPools__PoolEnded(poolHash, indexBalanceAtEnd, sState.balanceChangePerShare);
    }

    /// @notice Fills the order with the given parameters.
    /// @notice Transfers the collateral and mints the long and short tokens
    /// @dev Emits a `TradeHistoryEvent` and a `VolumeAccountingEvent`.
    /// @dev The order must not have already been filled.
    /// @dev The order must not have been cancelled.
    /// @dev The order must not have expired.
    /// @dev The signature must be valid.
    /// @param order The order to fill
    /// @param signature The signature of the order
    /// @param fraction The fraction of the order to fill. Pass 1e18 to fill 100% of the order.
    function fillOrder(SilicaOrder calldata order, bytes calldata signature, uint256 fraction) public nonReentrant {
        if (paused) {
            revert SilicaPools__Paused();
        }
        bytes32 orderHash = hashOrder(order, _domainSeparatorV4());

        // Order validation
        if (partialFillsEnabled == false && fraction != 1e18) {
            revert SilicaPools__PartialOrdersNotSupported(orderHash);
        }
        if (sOrderCancelled[orderHash]) {
            revert SilicaPools__OrderIsCancelled(orderHash);
        }
        if (ECDSA.recover(orderHash, signature) != order.maker) {
            revert SilicaPools__InvalidSignature(signature);
        }
        if (order.taker != address(0) && order.taker != msg.sender) {
            revert SilicaPools__InvalidCaller(msg.sender, order.taker);
        }
        if (order.expiry < block.timestamp) {
            revert SilicaPools__OrderExpired(order.expiry, block.timestamp);
        }
        if (sPoolState[hashPool(order.offeredLongSharesParams)].actualEndTimestamp != 0) {
            revert SilicaPools__PoolAlreadyEnded(hashPool(order.offeredLongSharesParams));
        }
        if (sPoolState[hashPool(order.requestedLongSharesParams)].actualEndTimestamp != 0) {
            revert SilicaPools__PoolAlreadyEnded(hashPool(order.requestedLongSharesParams));
        }

        // Logic for transferring LONG-side collateral for a LONG order
        if (order.offeredUpfrontAmount != 0) {
            SafeERC20.safeTransferFrom(
                IERC20(order.offeredUpfrontToken),
                order.maker,
                msg.sender,
                (uint256(order.offeredUpfrontAmount) * fraction) / 1e18
            );

            emit SilicaPools__Swap(
                hashPool(order.requestedLongSharesParams),
                orderHash,
                order.maker, // maker = long = receives long token transfer
                msg.sender, // taker = short = receives erc20 token transfer
                toLongTokenId(hashPool(order.requestedLongSharesParams)),
                (uint256(order.requestedLongShares)) * fraction / 1e18,
                order.offeredUpfrontToken,
                (uint256(order.offeredUpfrontAmount) * fraction) / 1e18
            );
        }

        // Logic for transferring LONG-side collateral for a SHORT order
        if (order.requestedUpfrontAmount != 0) {
            SafeERC20.safeTransferFrom(
                IERC20(order.requestedUpfrontToken),
                msg.sender,
                order.maker,
                (uint256(order.requestedUpfrontAmount) * fraction) / 1e18
            );

            emit SilicaPools__Swap(
                hashPool(order.offeredLongSharesParams),
                orderHash,
                msg.sender, // taker = long = receives long token transfer
                order.maker, // maker = short = receives erc20 token
                toLongTokenId(hashPool(order.offeredLongSharesParams)),
                (uint256(order.offeredLongShares) * fraction) / 1e18,
                order.requestedUpfrontToken,
                (uint256(order.requestedUpfrontAmount) * fraction) / 1e18
            );
        }

        // Logic for transferring SHORT-side collateral for a SHORT order
        if (order.offeredLongShares != 0) {
            require(isIndexWhitelisted[address(order.offeredLongSharesParams.index)], InvalidSilicaIndex());
            uint256 indexDecimals = ISilicaIndex(order.offeredLongSharesParams.index).decimals();

            uint256 collateral = PoolMaths.collateral(
                true,
                order.offeredLongSharesParams.floor,
                order.offeredLongSharesParams.cap,
                (uint256(order.offeredLongShares) * fraction) / 1e18,
                indexDecimals
            );

            // Taker pays the surcharge
            uint256 surcharge = (collateral * sFillFeeBps) / INVERSE_BASIS_POINT;
            SafeERC20.safeTransferFrom(
                IERC20(order.offeredLongSharesParams.payoutToken), msg.sender, sAlkimiyaTreasury, surcharge
            );
            uint256 tokenId = toShortTokenId(hashPool(order.offeredLongSharesParams));
            emit SilicaPools__FillFeePaid(
                msg.sender,
                hashPool(order.offeredLongSharesParams),
                orderHash,
                tokenId,
                order.offeredLongSharesParams.payoutToken,
                surcharge
            );

            // SHORT side calls collateralizedMint onbehalf of both parties
            _collateralizedMint(
                order.offeredLongSharesParams,
                orderHash,
                (uint256(order.offeredLongShares) * fraction) / 1e18,
                order.maker,
                msg.sender, // e.g. taker = buys yield = longRecipient
                order.maker // e.g. maker = sells (offers) yield = shortRecipient
            );

            // Event capturing exchanging collateral for short tokens
            emit SilicaPools__Swap(
                hashPool(order.offeredLongSharesParams),
                orderHash,
                order.maker,
                msg.sender,
                toShortTokenId(hashPool(order.offeredLongSharesParams)),
                (uint256(order.offeredLongShares) * fraction) / 1e18,
                order.requestedUpfrontToken,
                collateral - ((uint256(order.requestedUpfrontAmount) * fraction) / 1e18)
            );
        }

        // Logic for transferring SHORT-side collateral for a LONG order
        if (order.requestedLongShares != 0) {
            require(isIndexWhitelisted[address(order.requestedLongSharesParams.index)], InvalidSilicaIndex());
            uint256 indexDecimals = ISilicaIndex(order.requestedLongSharesParams.index).decimals();

            uint256 collateral = PoolMaths.collateral(
                true,
                order.requestedLongSharesParams.floor,
                order.requestedLongSharesParams.cap,
                (uint256(order.requestedLongShares) * fraction) / 1e18,
                indexDecimals
            );

            // Taker pays the surcharge
            uint256 surcharge = (collateral * sFillFeeBps) / INVERSE_BASIS_POINT;
            SafeERC20.safeTransferFrom(
                IERC20(order.requestedLongSharesParams.payoutToken), msg.sender, sAlkimiyaTreasury, surcharge
            );
            uint256 tokenId = toLongTokenId(hashPool(order.requestedLongSharesParams));
            emit SilicaPools__FillFeePaid(
                msg.sender,
                hashPool(order.requestedLongSharesParams),
                orderHash,
                tokenId,
                order.requestedLongSharesParams.payoutToken,
                surcharge
            );

            _collateralizedMint(
                order.requestedLongSharesParams,
                orderHash,
                (uint256(order.requestedLongShares) * fraction) / 1e18,
                msg.sender,
                order.maker, // e.g. maker = buys (requests) yield = longRecipient
                msg.sender // e.g. taker = sells yield = shortRecipient
            );

            emit SilicaPools__Swap(
                hashPool(order.requestedLongSharesParams),
                orderHash,
                msg.sender, // taker = short = receives pool token transfer
                order.maker, // maker = long = receives erc20 token
                toShortTokenId(hashPool(order.requestedLongSharesParams)),
                (uint256(order.requestedLongShares) * fraction) / 1e18,
                order.offeredUpfrontToken,
                collateral - ((uint256(order.offeredUpfrontAmount) * fraction) / 1e18)
            );
        }

        {
            uint256 newFilledFraction = sFilledFraction[orderHash] + fraction;
            sFilledFraction[orderHash] = newFilledFraction;

            emit SilicaPools__TradeHistoryEvent(
                orderHash,
                order.maker,
                msg.sender,
                hashPool(order.offeredLongSharesParams),
                hashPool(order.requestedLongSharesParams),
                order.requestedLongShares,
                order.offeredLongShares,
                fraction,
                1e18 - newFilledFraction
            );
        }
    }

    /// @notice Redeems shares for the payout token.
    /// @dev MUST emit `SilicaPools__SharesRedeemed`
    /// @param longParams The pools to redeem long shares from.
    function redeemLong(PoolParams calldata longParams) public {
        bytes32 poolHash = hashPool(longParams);
        PoolState storage sState = sPoolState[poolHash];

        if (sState.actualEndTimestamp == 0) {
            revert SilicaPools__PoolNotEnded(poolHash);
        }

        uint256 longTokenId = toLongTokenId(poolHash);
        uint256 longSharesBalance = balanceOf(msg.sender, longTokenId);

        uint256 payout = PoolMaths.longPayout(longParams, sState, longSharesBalance);

        _burn(msg.sender, longTokenId, longSharesBalance);

        SafeERC20.safeTransfer(IERC20(longParams.payoutToken), msg.sender, payout);

        emit SilicaPools__SharesRedeemed(
            poolHash, msg.sender, longTokenId, longSharesBalance, longParams.payoutToken, payout
        );
    }

    /// @notice Redeems shares for the payout token.
    /// @dev MUST emit `SilicaPools__SharesRedeemed`
    /// @param shortParams The pools to redeem short shares from.
    function redeemShort(PoolParams calldata shortParams) public {
        bytes32 poolHash = hashPool(shortParams);
        PoolState storage sState = sPoolState[poolHash];

        if (sState.actualEndTimestamp == 0) {
            revert SilicaPools__PoolNotEnded(poolHash);
        }

        uint256 shortTokenId = toShortTokenId(poolHash);
        uint256 shortSharesBalance = balanceOf(msg.sender, shortTokenId);

        uint256 payout = PoolMaths.shortPayout(shortParams, sState, shortSharesBalance);

        _burn(msg.sender, shortTokenId, shortSharesBalance);

        SafeERC20.safeTransfer(IERC20(shortParams.payoutToken), msg.sender, payout);

        emit SilicaPools__SharesRedeemed(
            poolHash, msg.sender, shortTokenId, shortSharesBalance, shortParams.payoutToken, payout
        );
    }

    /// @inheritdoc ISilicaPools
    function collateralRefund(PoolParams[] calldata poolParams, uint256[] calldata shares) public nonReentrant {
        if (poolParams.length != shares.length) {
            revert SilicaPools__ArrayLengthMismatch();
        }

        for (uint256 i; i < poolParams.length; ++i) {
            _collateralRefund(poolParams[i], shares[i]);
        }
    }

    /*//////////////////////////////////////////////////////////////
                        PUBLIC PURE FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /// @notice Converts a pool hash to a long token ID.
    /// @param poolHash The hash of the pool.
    /// @return The long token ID.
    function toLongTokenId(bytes32 poolHash) public pure returns (uint256) {
        return uint256(poolHash);
    }

    /// @notice Converts a pool hash to a short token ID.
    /// @param poolHash The hash of the pool.
    /// @return The short token ID.
    function toShortTokenId(bytes32 poolHash) public pure returns (uint256) {
        return uint256(poolHash ^ TOKENID_SALT);
    }

    /// @notice Converts a long token ID to a pool hash.
    /// @param longTokenId The long token ID.
    /// @return The pool hash.
    function fromLongTokenId(uint256 longTokenId) public pure returns (bytes32) {
        return bytes32(longTokenId);
    }

    /// @notice Converts a short token ID to a pool hash.
    /// @param shortTokenId The short token ID.
    /// @return The pool hash.
    function fromShortTokenId(uint256 shortTokenId) public pure returns (bytes32) {
        return bytes32(shortTokenId) ^ TOKENID_SALT;
    }

    /// @notice Hashes the pool parameters.
    /// @param poolParams The pool parameters.
    /// @return The hash of the pool parameters.
    function hashPool(PoolParams calldata poolParams) public pure returns (bytes32) {
        return keccak256(
            abi.encodePacked(
                poolParams.floor,
                poolParams.cap,
                poolParams.index,
                poolParams.targetStartTimestamp,
                poolParams.targetEndTimestamp,
                poolParams.payoutToken
            )
        );
    }

    /// @notice Hashes the order parameters.
    /// @param order The order parameters.
    /// @param domainSeparator The EIP-712 domain separator.
    /// @return The hash of the order parameters.
    function hashOrder(SilicaOrder calldata order, bytes32 domainSeparator) public pure returns (bytes32) {
        // Encode in chunks to circumvent "stack too deep" error
        bytes32 offeredStructHash = keccak256(abi.encode(SILICA_POOL_TYPEHASH, order.offeredLongSharesParams));
        bytes32 requestedStructHash = keccak256(abi.encode(SILICA_POOL_TYPEHASH, order.requestedLongSharesParams));
        bytes32 structHash = keccak256(
            abi.encode(
                SILICA_ORDER_TYPEHASH,
                order.maker,
                order.taker,
                order.expiry,
                order.offeredUpfrontToken,
                order.offeredUpfrontAmount,
                order.offeredLongShares,
                offeredStructHash,
                order.requestedUpfrontToken,
                order.requestedUpfrontAmount,
                order.requestedLongShares,
                requestedStructHash
            )
        );

        return MessageHashUtils.toTypedDataHash(domainSeparator, structHash);
    }

    /// @notice Hashes the order parameters.
    /// @param order The order parameters.
    /// @return The hash of the order parameters.
    function hashOrder(SilicaOrder calldata order) public view returns (bytes32) {
        return _hashOrder(order, _domainSeparatorV4());
    }

    function _hashOrder(SilicaOrder memory order, bytes32 domainSeparator) internal pure returns (bytes32) {
        // Encode in chunks to circumvent "stack too deep" error
        bytes32 offeredStructHash = keccak256(abi.encode(SILICA_POOL_TYPEHASH, order.offeredLongSharesParams));
        bytes32 requestedStructHash = keccak256(abi.encode(SILICA_POOL_TYPEHASH, order.requestedLongSharesParams));
        bytes32 structHash = keccak256(
            abi.encode(
                SILICA_ORDER_TYPEHASH,
                order.maker,
                order.taker,
                order.expiry,
                order.offeredUpfrontToken,
                order.offeredUpfrontAmount,
                order.offeredLongShares,
                offeredStructHash,
                order.requestedUpfrontToken,
                order.requestedUpfrontAmount,
                order.requestedLongShares,
                requestedStructHash
            )
        );

        return MessageHashUtils.toTypedDataHash(domainSeparator, structHash);
    }

    /*//////////////////////////////////////////////////////////////
                          INTERNAL FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /// @notice Internal function to mint long and short tokens for a pool.
    /// @dev This is `internal` because it must be approved by the `payer`.
    ///      Do not call this function otherwise.
    /// @param poolParams The paramter struct for the associated pool
    /// @param payer The address that will pay the collateral
    /// @param longRecipient The address that will receive `shares` long tokens
    /// @param shortRecipient The address that will receive `shares` short tokens
    function _collateralizedMint(
        PoolParams calldata poolParams,
        bytes32 orderHash,
        uint256 shares,
        address payer,
        address longRecipient,
        address shortRecipient
    ) internal onlyWhitelistedIndex(poolParams.index) {
        require(shares <= type(uint128).max, "Shares exceed uint128 max");

        bytes32 poolHash = hashPool(poolParams);

        if (sPoolState[poolHash].actualEndTimestamp != 0) {
            revert SilicaPools__PoolAlreadyEnded(poolHash);
        }

        ISilicaIndex index = ISilicaIndex(poolParams.index);

        ISilicaPools.PoolState storage sState = sPoolState[poolHash];

        uint256 collateral = PoolMaths.collateral(true, poolParams.floor, poolParams.cap, shares, index.decimals());

        sState.collateralMinted += uint128(collateral);

        SafeERC20.safeTransferFrom(IERC20(poolParams.payoutToken), payer, address(this), collateral);

        if (longRecipient == address(0)) {
            longRecipient = msg.sender;
        }
        if (shortRecipient == address(0)) {
            shortRecipient = msg.sender;
        }

        sState.sharesMinted += uint128(shares);

        uint256 longTokenId = toLongTokenId(poolHash);
        uint256 shortTokenId = toShortTokenId(poolHash);

        _mint(longRecipient, longTokenId, shares, "");
        _mint(shortRecipient, shortTokenId, shares, "");

        emit SilicaPools__CollateralizedMint(
            poolHash,
            orderHash,
            longTokenId,
            shortTokenId,
            shortRecipient,
            longRecipient,
            payer,
            shares,
            poolParams.payoutToken,
            collateral
        );
    }

    /// @notice Internal calculator to determine bounty value for calling startPool()
    /// @param poolParams The paramter struct for the associated pool
    /// @return bounty The uint256 amount of bounty associated with that pool's collateral
    function _startBounty(PoolParams calldata poolParams) internal view returns (uint256 bounty) {
        bytes32 poolHash = hashPool(poolParams);
        ISilicaPools.PoolState storage sState = sPoolState[poolHash];

        uint256 collateral = sState.collateralMinted;

        uint256 uncappedBountyFraction = block.timestamp > poolParams.targetStartTimestamp + sBountyGracePeriod
            ? uint256(block.timestamp - poolParams.targetStartTimestamp - sBountyGracePeriod)
                * sBountyFractionIncreasePerSecond
            : 0;

        uint256 bountyFraction =
            uncappedBountyFraction > sMaxBountyFraction ? sMaxBountyFraction : uncappedBountyFraction;

        bounty = (bountyFraction * collateral) / 1e18;
    }

    /// @notice Internal bounty calculator function
    /// @param poolParams: The paramter struct for the associated pool
    /// @return bounty The uint256 amount of bounty associated with that pool's collateral
    function _endBounty(PoolParams calldata poolParams) internal view returns (uint256 bounty) {
        bytes32 poolHash = hashPool(poolParams);
        uint256 collateral = sPoolState[poolHash].collateralMinted;

        uint256 uncappedBountyFraction = block.timestamp > poolParams.targetEndTimestamp + sBountyGracePeriod
            ? uint256(block.timestamp - poolParams.targetEndTimestamp - sBountyGracePeriod)
                * sBountyFractionIncreasePerSecond
            : 0;

        uint256 bountyFraction =
            uncappedBountyFraction > sMaxBountyFraction ? sMaxBountyFraction : uncappedBountyFraction;

        bounty = (bountyFraction * collateral) / 1e18;
    }

    /// @notice Internal function to refund collateral to the user.
    /// @dev This is `internal` because it must be approved by the `payer`.
    ///      Do not call this function otherwise.
    /// @dev Called by `collateralRefund()` and `maxCollateralRefund()` with msg.sender as the recipient.
    /// @dev Emits a `SilicaPools__SharesRefunded` event.
    /// @param poolParams The paramter struct for the associated pool.
    /// @param shares The number of shares to refund.
    function _collateralRefund(PoolParams calldata poolParams, uint256 shares) internal {
        bytes32 poolHash = hashPool(poolParams);
        ISilicaPools.PoolState storage sState = sPoolState[poolHash];

        uint256 refundCollateral = (uint256(sState.collateralMinted) * shares) / uint256(sState.sharesMinted);

        sState.sharesMinted -= uint128(shares);

        uint256 longTokenId = toLongTokenId(poolHash);
        uint256 shortTokenId = toShortTokenId(poolHash);

        _burn(msg.sender, longTokenId, shares);
        _burn(msg.sender, shortTokenId, shares);

        sState.collateralMinted -= uint128(refundCollateral);
        SafeERC20.safeTransfer(IERC20(poolParams.payoutToken), msg.sender, refundCollateral);

        emit SilicaPools__SharesRefunded(
            poolHash, longTokenId, shortTokenId, msg.sender, poolParams.payoutToken, shares, refundCollateral
        );
    }

    modifier onlyWhitelistedIndex(address indexAddr) {
        require(isIndexWhitelisted[indexAddr], "InvalidSilicaIndex");
        _;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 5 of 40 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/ERC1155.sol)

pragma solidity ^0.8.20;

import {IERC1155} from "./IERC1155.sol";
import {IERC1155MetadataURI} from "./extensions/IERC1155MetadataURI.sol";
import {ERC1155Utils} from "./utils/ERC1155Utils.sol";
import {Context} from "../../utils/Context.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {Arrays} from "../../utils/Arrays.sol";
import {IERC1155Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the basic standard multi-token.
 * See https://eips.ethereum.org/EIPS/eip-1155
 * Originally based on code by Enjin: https://github.com/enjin/erc-1155
 */
abstract contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI, IERC1155Errors {
    using Arrays for uint256[];
    using Arrays for address[];

    mapping(uint256 id => mapping(address account => uint256)) private _balances;

    mapping(address account => mapping(address operator => bool)) private _operatorApprovals;

    // Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
    string private _uri;

    /**
     * @dev See {_setURI}.
     */
    constructor(string memory uri_) {
        _setURI(uri_);
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC1155).interfaceId ||
            interfaceId == type(IERC1155MetadataURI).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC1155MetadataURI-uri}.
     *
     * This implementation returns the same URI for *all* token types. It relies
     * on the token type ID substitution mechanism
     * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
     *
     * Clients calling this function must replace the `\{id\}` substring with the
     * actual token type ID.
     */
    function uri(uint256 /* id */) public view virtual returns (string memory) {
        return _uri;
    }

    /**
     * @dev See {IERC1155-balanceOf}.
     */
    function balanceOf(address account, uint256 id) public view virtual returns (uint256) {
        return _balances[id][account];
    }

    /**
     * @dev See {IERC1155-balanceOfBatch}.
     *
     * Requirements:
     *
     * - `accounts` and `ids` must have the same length.
     */
    function balanceOfBatch(
        address[] memory accounts,
        uint256[] memory ids
    ) public view virtual returns (uint256[] memory) {
        if (accounts.length != ids.length) {
            revert ERC1155InvalidArrayLength(ids.length, accounts.length);
        }

        uint256[] memory batchBalances = new uint256[](accounts.length);

        for (uint256 i = 0; i < accounts.length; ++i) {
            batchBalances[i] = balanceOf(accounts.unsafeMemoryAccess(i), ids.unsafeMemoryAccess(i));
        }

        return batchBalances;
    }

    /**
     * @dev See {IERC1155-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /**
     * @dev See {IERC1155-isApprovedForAll}.
     */
    function isApprovedForAll(address account, address operator) public view virtual returns (bool) {
        return _operatorApprovals[account][operator];
    }

    /**
     * @dev See {IERC1155-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) public virtual {
        address sender = _msgSender();
        if (from != sender && !isApprovedForAll(from, sender)) {
            revert ERC1155MissingApprovalForAll(sender, from);
        }
        _safeTransferFrom(from, to, id, value, data);
    }

    /**
     * @dev See {IERC1155-safeBatchTransferFrom}.
     */
    function safeBatchTransferFrom(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) public virtual {
        address sender = _msgSender();
        if (from != sender && !isApprovedForAll(from, sender)) {
            revert ERC1155MissingApprovalForAll(sender, from);
        }
        _safeBatchTransferFrom(from, to, ids, values, data);
    }

    /**
     * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`. Will mint (or burn) if `from`
     * (or `to`) is the zero address.
     *
     * Emits a {TransferSingle} event if the arrays contain one element, and {TransferBatch} otherwise.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement either {IERC1155Receiver-onERC1155Received}
     *   or {IERC1155Receiver-onERC1155BatchReceived} and return the acceptance magic value.
     * - `ids` and `values` must have the same length.
     *
     * NOTE: The ERC-1155 acceptance check is not performed in this function. See {_updateWithAcceptanceCheck} instead.
     */
    function _update(address from, address to, uint256[] memory ids, uint256[] memory values) internal virtual {
        if (ids.length != values.length) {
            revert ERC1155InvalidArrayLength(ids.length, values.length);
        }

        address operator = _msgSender();

        for (uint256 i = 0; i < ids.length; ++i) {
            uint256 id = ids.unsafeMemoryAccess(i);
            uint256 value = values.unsafeMemoryAccess(i);

            if (from != address(0)) {
                uint256 fromBalance = _balances[id][from];
                if (fromBalance < value) {
                    revert ERC1155InsufficientBalance(from, fromBalance, value, id);
                }
                unchecked {
                    // Overflow not possible: value <= fromBalance
                    _balances[id][from] = fromBalance - value;
                }
            }

            if (to != address(0)) {
                _balances[id][to] += value;
            }
        }

        if (ids.length == 1) {
            uint256 id = ids.unsafeMemoryAccess(0);
            uint256 value = values.unsafeMemoryAccess(0);
            emit TransferSingle(operator, from, to, id, value);
        } else {
            emit TransferBatch(operator, from, to, ids, values);
        }
    }

    /**
     * @dev Version of {_update} that performs the token acceptance check by calling
     * {IERC1155Receiver-onERC1155Received} or {IERC1155Receiver-onERC1155BatchReceived} on the receiver address if it
     * contains code (eg. is a smart contract at the moment of execution).
     *
     * IMPORTANT: Overriding this function is discouraged because it poses a reentrancy risk from the receiver. So any
     * update to the contract state after this function would break the check-effect-interaction pattern. Consider
     * overriding {_update} instead.
     */
    function _updateWithAcceptanceCheck(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal virtual {
        _update(from, to, ids, values);
        if (to != address(0)) {
            address operator = _msgSender();
            if (ids.length == 1) {
                uint256 id = ids.unsafeMemoryAccess(0);
                uint256 value = values.unsafeMemoryAccess(0);
                ERC1155Utils.checkOnERC1155Received(operator, from, to, id, value, data);
            } else {
                ERC1155Utils.checkOnERC1155BatchReceived(operator, from, to, ids, values, data);
            }
        }
    }

    /**
     * @dev Transfers a `value` tokens of token type `id` from `from` to `to`.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `from` must have a balance of tokens of type `id` of at least `value` amount.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function _safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(from, to, ids, values, data);
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     * - `ids` and `values` must have the same length.
     */
    function _safeBatchTransferFrom(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        _updateWithAcceptanceCheck(from, to, ids, values, data);
    }

    /**
     * @dev Sets a new URI for all token types, by relying on the token type ID
     * substitution mechanism
     * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
     *
     * By this mechanism, any occurrence of the `\{id\}` substring in either the
     * URI or any of the values in the JSON file at said URI will be replaced by
     * clients with the token type ID.
     *
     * For example, the `https://token-cdn-domain/\{id\}.json` URI would be
     * interpreted by clients as
     * `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
     * for token type ID 0x4cce0.
     *
     * See {uri}.
     *
     * Because these URIs cannot be meaningfully represented by the {URI} event,
     * this function emits no events.
     */
    function _setURI(string memory newuri) internal virtual {
        _uri = newuri;
    }

    /**
     * @dev Creates a `value` amount of tokens of type `id`, and assigns them to `to`.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function _mint(address to, uint256 id, uint256 value, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(address(0), to, ids, values, data);
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - `ids` and `values` must have the same length.
     * - `to` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     */
    function _mintBatch(address to, uint256[] memory ids, uint256[] memory values, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        _updateWithAcceptanceCheck(address(0), to, ids, values, data);
    }

    /**
     * @dev Destroys a `value` amount of tokens of type `id` from `from`
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `from` must have at least `value` amount of tokens of type `id`.
     */
    function _burn(address from, uint256 id, uint256 value) internal {
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(from, address(0), ids, values, "");
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `from` must have at least `value` amount of tokens of type `id`.
     * - `ids` and `values` must have the same length.
     */
    function _burnBatch(address from, uint256[] memory ids, uint256[] memory values) internal {
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        _updateWithAcceptanceCheck(from, address(0), ids, values, "");
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Emits an {ApprovalForAll} event.
     *
     * Requirements:
     *
     * - `operator` cannot be the zero address.
     */
    function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
        if (operator == address(0)) {
            revert ERC1155InvalidOperator(address(0));
        }
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Creates an array in memory with only one value for each of the elements provided.
     */
    function _asSingletonArrays(
        uint256 element1,
        uint256 element2
    ) private pure returns (uint256[] memory array1, uint256[] memory array2) {
        assembly ("memory-safe") {
            // Load the free memory pointer
            array1 := mload(0x40)
            // Set array length to 1
            mstore(array1, 1)
            // Store the single element at the next word after the length (where content starts)
            mstore(add(array1, 0x20), element1)

            // Repeat for next array locating it right after the first array
            array2 := add(array1, 0x40)
            mstore(array2, 1)
            mstore(add(array2, 0x20), element2)

            // Update the free memory pointer by pointing after the second array
            mstore(0x40, add(array2, 0x40))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {Ownable} from "./Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * This extension of the {Ownable} contract includes a two-step mechanism to transfer
 * ownership, where the new owner must call {acceptOwnership} in order to replace the
 * old one. This can help prevent common mistakes, such as transfers of ownership to
 * incorrect accounts, or to contracts that are unable to interact with the
 * permission system.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     *
     * Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {ISilicaPools} from "../core/interfaces/ISilicaPools.sol";
import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
/**
 *      _    _ _    _           _
 *     / \  | | | _(_)_ __ ___ (_)_   _  __ _
 *    / _ \ | | |/ / | '_ ` _ \| | | | |/ _` |
 *   / ___ \| |   <| | | | | | | | |_| | (_| |
 *  /_/   \_\_|_|\_\_|_| |_| |_|_|\__, |\__,_|
 *   ____             _   __  __  |___/_   _
 *  |  _ \ ___   ___ | | |  \/  | __ _| |_| |__  ___
 *  | |_) / _ \ / _ \| | | |\/| |/ _` | __| '_ \/ __|
 *  |  __/ (_) | (_) | | | |  | | (_| | |_| | | \__ \
 *  |_|   \___/ \___/|_| |_|  |_|\__,_|\__|_| |_|___/
 */

library PoolMaths {
    /// @notice Calculate the collateral required for a given floor, cap, shares, and shareDecimals.
    /// @param floor The predetermined lower bound on the Pool’s payout.
    /// @param cap The predetermined upper bound on the Pool’s payout.
    /// @param shares The number of short and long shares to be minted by the Pool.
    /// @param shareDecimals The number of decimal places in the shares.
    /// @return The collateral required to cover the Pool's payout for the associated amount of shares.
    function collateral(bool isRoundUp, uint128 floor, uint128 cap, uint256 shares, uint256 shareDecimals)
        internal
        pure
        returns (uint256)
    {
        uint256 intermediateValue = (cap - floor) * shares;
        return isRoundUp
            ? FixedPointMathLib.divUp(intermediateValue, 10 ** shareDecimals)
            : intermediateValue / 10 ** shareDecimals;
    }

    function collateralRequirements(
        uint128 floor,
        uint128 cap,
        uint256 shares,
        uint256 shareDecimals,
        uint256 upfrontAmount,
        uint256 fraction
    ) internal pure returns (uint256 longCollateral, uint256 shortCollateral) {
        require((cap - floor) * shares / 10 ** shareDecimals <= upfrontAmount, "overcollateralized");
        longCollateral = upfrontAmount;

        shortCollateral = PoolMaths.shortCollateralRequirement(floor, cap, shares, shareDecimals, upfrontAmount);

        return (longCollateral, shortCollateral);
    }

    function shortCollateralRequirement(
        uint128 floor,
        uint128 cap,
        uint256 shares,
        uint256 shareDecimals,
        uint256 upfrontAmount
    ) internal pure returns (uint256 shortCollateral) {
        uint256 totalCollateral = PoolMaths.collateral(true, floor, cap, shares, shareDecimals);

        return totalCollateral - upfrontAmount;
    }

    /// @notice Function to calculate the short payout when a user calls redeem based on their shares
    /// @param shortParams The PoolParams for pool being redeemed from
    /// @param sState The PoolState for that pool
    /// @param shortSharesBalance The users balance of short shares
    /// @return payout The payout for the user
    function shortPayout(
        ISilicaPools.PoolParams memory shortParams,
        ISilicaPools.PoolState memory sState,
        uint256 shortSharesBalance
    ) internal pure returns (uint256 payout) {
        // Short payouts pay (cap - balanceChangePerShare) * collateralMinted / (cap - floor) * shortSharesBalance / totalSharesMinted
        payout = (
            (
                (uint256(shortParams.cap - sState.balanceChangePerShare) * uint256(sState.collateralMinted))
                    / uint256(shortParams.cap - shortParams.floor)
            ) * uint256(shortSharesBalance)
        ) / uint256(sState.sharesMinted);
    }

    /// @notice Function to calculate the long payout when a user calls redeem based on their shares
    /// @param longParams The PoolParams for pool being redeemed from
    /// @param sState The PoolState for that pool
    /// @param longSharesBalance The users balance of long shares
    /// @return payout The payout for the user
    function longPayout(
        ISilicaPools.PoolParams calldata longParams,
        ISilicaPools.PoolState memory sState,
        uint256 longSharesBalance
    ) internal pure returns (uint256 payout) {
        // Long payouts pay ((balanceChangePerShare - floor) * collateralMinted) / ((cap - floor) * longSharesBalance) / totalSharesMinted)
        payout = (
            (
                (uint256(sState.balanceChangePerShare - longParams.floor) * uint256(sState.collateralMinted))
                    / uint256(longParams.cap - longParams.floor)
            ) * uint256(longSharesBalance)
        ) / uint256(sState.sharesMinted);
    }

    /// @notice Function to calculate grossBalanceChangePerShare
    /// @param indexBalance The current balance of the index. The Index is a time-varying benchmark value that reflects market dynamics.
    /// @param indexInitialBalance The initial balance of the index.
    /// @param indexShares The number of shares of the index.
    /// @param indexDecimals The number of decimal places in the index.
    /// @return The gross balance change per share.
    function grossBalanceChangePerShare(
        uint256 indexBalance,
        uint256 indexInitialBalance,
        uint256 indexShares,
        uint256 indexDecimals
    ) internal pure returns (uint256) {
        require(indexShares > 0, "Index shares must be greater than zero");
        require(
            indexBalance >= indexInitialBalance, "Index balance must be greater than or equal to the initial balance"
        );
        return ((indexBalance - indexInitialBalance) * 10 ** indexDecimals) / indexShares;
    }

    /// @notice Function to calculate the balance change per share
    /// @param floor The predetermined lower bound on the Pool’s payout.
    /// @param cap The predetermined upper bound on the Pool’s payout.
    /// @param grossBalanceChangePerShare The gross balance change per share.
    /// @return The balance change per share.
    function _balanceChangePerShare(uint256 floor, uint256 cap, uint256 grossBalanceChangePerShare)
        internal
        pure
        returns (uint256)
    {
        return max(floor, min(cap, grossBalanceChangePerShare));
    }

    // diff
    function balanceChangePerShare(
        uint256 indexBalance,
        uint128 indexInitialBalance,
        uint128 indexShares,
        uint256 indexDecimals,
        uint128 floor,
        uint128 cap
    ) internal pure returns (uint256) {
        return _balanceChangePerShare(
            floor, cap, grossBalanceChangePerShare(indexBalance, indexInitialBalance, indexShares, indexDecimals)
        );
    }

    // Helper function for min
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    // Helper function for max
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }
}

///// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/**
 *      _    _ _    _           _
 *     / \  | | | _(_)_ __ ___ (_)_   _  __ _
 *    / _ \ | | |/ / | '_ ` _ \| | | | |/ _` |
 *   / ___ \| |   <| | | | | | | | |_| | (_| |
 *  /_/__ \_\_|_|\_\_|_| |_| |_|_|\__, |\__,_|_
 *  / ___|(_) (_) ___ __ _  |  _ \|___/  ___ | |___
 *  \___ \| | | |/ __/ _` | | |_) / _ \ / _ \| / __|
 *   ___) | | | | (_| (_| | |  __/ (_) | (_) | \__ \
 *  |____/|_|_|_|\___\__,_| |_|   \___/ \___/|_|___/
 */
import {IERC20} from "@openzeppelin/token/ERC20/IERC20.sol";
import {IERC1155} from "@openzeppelin/token/ERC1155/IERC1155.sol";

import {ISilicaIndex} from "../../index/interfaces/ISilicaIndex.sol";

/// @title Silica Pools Protocol
/// @author Alkimiya
/// @notice Protocol for allocating tokens into pools which track
///         a balance change over a specified period and pay out
///         accordingly: https://www.investopedia.com/terms/v/verticalspread.asp
/// @custom:example If a pool specifies strikes of 100-200 DAI per share
///                 over a 1 year term, and the balance change over the term
///                 is 160 DAI per share, then at the end of the pool's term,
///                 60 DAI per share (160 - 100) is paid out to
///                 holders of long shares, and 40 DAI per share (200 - 160)
///                 is paid out to holders of short shares.
interface ISilicaPools is IERC1155 {
    event SilicaPools__FillFeeChanged(uint256 newFeeBps);
    event SilicaPools__GracePeriodChanged(uint256 newGracePeriod);
    event SilicaPools__BountyIncreaseRateChanged(uint256 newRate);
    event SilicaPools__MaxBountyFractionChanged(uint256 newMaxFraction);
    event SilicaPools__TreasuryAddressChanged(address newTreasuryAddress);
    event SilicaPools__PauseProtocol();
    event SilicaPools__UnpauseProtocol();

    event SilicaPools__OrderCancelled(bytes32 indexed orderHash);

    event SilicaPools__PoolStarted( // NAME CHANGE
        bytes32 indexed poolHash,
        uint128 floor,
        uint128 cap,
        uint48 targetStartTime,
        uint48 targetEndTime,
        address index,
        address payoutToken,
        uint128 indexSharesAtStart,
        uint128 indexBalanceAtStart,
        uint256 longTokenId,
        uint256 shortTokenId
    );

    event SilicaPools__BountyPaid(bytes32 indexed poolHash, uint256 bountyAmount, address receiver);

    event SilicaPools__PoolEnded(bytes32 indexed poolHash, uint256 indexBalanceAtEnd, uint128 balanceChangePerShare);

    event SilicaPools__CollateralizedMint( // zero-hash if not triggered by an order
        bytes32 indexed poolHash,
        bytes32 orderHash,
        uint256 longTokenId,
        uint256 shortTokenId,
        address shortRecipient,
        address longRecipient,
        address indexed payer,
        uint256 sharesMinted,
        address collateralToken,
        uint256 collateralAmount
    );

    event SilicaPools__FillFeePaid(
        address indexed payer,
        bytes32 indexed poolHash,
        bytes32 indexed orderHash,
        uint256 tokenId,
        address tokenPaid,
        uint256 amount
    );

    event SilicaPools__SharesRefunded(
        bytes32 indexed poolHash,
        uint256 longTokenId,
        uint256 shortTokenId,
        address indexed recipient,
        address indexed payoutToken,
        uint256 sharesRefunded,
        uint256 collateralRefunded
    );

    event SilicaPools__SharesRedeemed(
        bytes32 indexed poolHash,
        address indexed recipient,
        uint256 indexed tokenId,
        uint256 sharesRedeemed,
        address payoutToken,
        uint256 payoutTokenAmount
    );

    event SilicaPools__TradeHistoryEvent(
        bytes32 indexed orderHash,
        address indexed maker,
        address indexed taker,
        bytes32 offeredPoolHash,
        bytes32 requestedPoolHash,
        uint256 requestedUpfrontAmount,
        uint256 offeredUpfrontAmount,
        uint256 filledFraction,
        uint256 remainingFraction
    );

    event SilicaPools__Swap(
        bytes32 indexed poolHash,
        bytes32 orderHash,
        address indexed poolTokenRecipient,
        address indexed erc20Recipient,
        uint256 poolTokenId,
        uint256 poolTokenAmount,
        address erc20Token,
        uint256 erc20Amount
    );

    event SilicaIndexWhitelisted(address indexed addressToWhitelist);
    event SilicaIndexBlacklisted(address indexed addressToBlacklist);

    // Thrown when two input arrays have different lengths
    error SilicaPools__ArrayLengthMismatch();
    // Thrown when the signature of an order is invalid
    error SilicaPools__InvalidSignature(bytes signature);
    // Thrown when ending a pool that has already finished
    error SilicaPools__PoolAlreadyEnded(bytes32 poolHash);
    // Thrown when starting a pool that has already begun
    error SilicaPools__PoolAlreadyStarted(bytes32 poolHash);
    // Thrown when trying to redeem before pool end
    error SilicaPools__PoolNotEnded(bytes32 poolHash);
    // Thrown when interacting with a cancelled order
    error SilicaPools__OrderIsCancelled(bytes32 orderHash);
    // Thrown when filling an order partially
    error SilicaPools__PartialOrdersNotSupported(bytes32 orderHash);
    // Thrown when filling an order that is expired
    error SilicaPools__OrderExpired(uint256 expiry, uint256 blockTimestamp);
    // Thrown when a caller who is not the maker tries to update an order
    error SilicaPools__InvalidCaller(address caller, address expectedCaller);
    // Thrown when starting a pool before its target start time
    error SilicaPools__TooEarlyToStart(uint256 attemptedTimestamp, uint256 targetTimestamp);
    // Thrown when ending a pool before its target end time
    error SilicaPools__TooEarlyToEnd(uint256 attemptedTimestamp, uint256 targetTimestamp);
    // Thrown when filling an order with protocol that is paused
    error SilicaPools__Paused();
    // Thrown when non-whitelisted index
    error InvalidSilicaIndex();

    struct PoolParams {
        // 3 storage slots
        /// @notice The "balance change per share" below which
        ///         long shares pay out 0, and short shares pay out the maximum:
        ///         (cap - floor) * shares
        uint128 floor;
        /// @notice The "balance change per share" above which
        ///         short shares pay out 0, and long shares pay out the maximum:
        ///         (cap - floor) * shares
        uint128 cap;
        /// @notice The address of the contract which reports the tracked balance
        /// @custom:see ISilicaIndex
        address index;
        /// @notice The timestamp (in UNIX seconds) after which the pool may be started
        uint48 targetStartTimestamp;
        /// @notice The timestamp (in UNIX seconds) after which the pool may be ended
        uint48 targetEndTimestamp;
        /// @notice Address of the token in which the payout is denominated
        address payoutToken;
    }

    struct PoolState {
        // 3 storage slots
        /// @notice The amount of collateral minted for this pool
        ///         denominated in `SilicaPool.payoutToken`
        /// @notice Increases on mints
        /// @notice Decreases on bounty payouts
        /// @notice Decreases on collateral refunds
        /// @notice Does *not* decrease on shares redeemed
        /// @dev MUST update at mint, refund, bounty payout
        uint128 collateralMinted;
        /// @notice The amount of tokens/shares that have minted for this pool
        /// @notice Increases on mints
        /// @notice Decreases on collateral refunds
        /// @notice Does *not* decrease on shares redeemed
        /// @dev MUST update at mint, refund
        uint128 sharesMinted;
        /// @notice The number of shares the `index` represents,
        ///         as of the pool actual start
        /// @dev MUST record at pool actual start
        uint128 indexShares;
        /// @dev MUST record at pool actual start
        uint128 indexInitialBalance;
        /// @notice The timestamp (in UNIX seconds) after which the pool was started
        /// @dev MUST record at pool actual start
        uint48 actualStartTimestamp;
        /// @notice The timestamp (in UNIX seconds) after which the pool was ended
        /// @dev MUST record at pool actual end
        uint48 actualEndTimestamp;
        /// @dev MUST record at pool actual end. MUST be pro-rated from
        ///      `actualEndTimestamp - actualStartTimestamp` to
        ///      `targetStartTimestamp - targetStartTimestamp`,
        ///      since the target time range is what the users are buying.
        ///      MUST be clamped between `floor` and `cap`.
        /// @notice Clients SHOULD program defensively in case this failed to be
        ///         clamped between `floor` and `cap`
        uint128 balanceChangePerShare;
    }

    /// @notice !TRADE OFFER!
    ///         i receive: requested long shares, requested upfront amount.
    ///         you receive: offered long shares, offered upfront amount.
    ///         `SilicaOrder` may not be used to offer/request short shares,
    ///         since you can offer short shares by requesting long shares,
    ///         and you can request short shares by offering long shares.
    /// @custom:example To sell stETH yield for upfront USDC, set
    ///                 `offeredIndex` to stETH index and
    ///                 `requestedUpfrontToken` to USDC.
    ///                 Set `requestedIndex` and `offeredUpfrontToken` to 0x0.
    /// @custom:example To buy stETH yield with upfront USDC, set
    ///                 `requestedIndex` to stETH index
    ///                 and `offeredUpfrontToken` to USDC.
    ///                 Set `offeredIndex` and `requestedUpfrontToken` to 0x0.
    /// @custom:example To do a "float-to-float" trade, set both `offeredIndex`
    ///                 and `requestedIndex`. If the `offeredLongShares` is a greater
    ///                 exposure than the `requestedLongShares`, then the
    ///                 `requestedUpfrontAmount` should compensate, and vice versa.
    /// @custom:example To "deleverage", i.e. sell the full balance change without
    ///                 subtracting the `floor`: set both `offeredIndex`
    ///                 and `offeredUpfrontToken`. Set `offeredUpfrontAmount` to
    ///                 `offeredfloor * offeredLongShares`.
    /// @custom:example For a deleveraged float-to-float trade, set all 4 fields:
    ///                 `offeredIndex`, `offeredUpfrontToken`,
    ///                 `requestedIndex`, `requestedUpfrontToken`.
    struct SilicaOrder {
        /// @notice The wallet which created and signed the order,
        ///         i.e. `ecrecover` must return this address.
        ///         Assets are `offered` from the `maker` to takers,
        ///         and `requested` by the `maker` from takers.
        address maker;
        /// @notice If this is 0x0, anyone may fill this order.
        ///         Otherwise, this is a private order and
        ///         only `taker` may fill it.
        address taker; // 0x0 if public order
        uint48 expiry; // UNIX seconds
        /// @notice 0x0 if no upfront amount offered
        address offeredUpfrontToken;
        uint128 offeredUpfrontAmount;
        /// @notice 0x0 if no long shares offered
        PoolParams offeredLongSharesParams;
        uint128 offeredLongShares;
        /// @notice 0x0 if no upfront amount requested
        address requestedUpfrontToken;
        uint128 requestedUpfrontAmount;
        /// @notice 0x0 if no long shares requested
        PoolParams requestedLongSharesParams;
        uint128 requestedLongShares;
    }

    /// @notice Domain separator for EIP-712.
    function domainSeparatorV4() external view returns (bytes32);

    /// @notice The fee, in basis points, for minting long and short shares
    function fillFeeBps() external returns (uint256);

    /// @notice Only callable by owner
    /// @dev MUST emit `SilicaPools__MintFeeChanged`
    /// @param newFeeBps The new fee, in basis points
    function setFillFeeBps(uint256 newFeeBps) external;

    /// @notice The address which receives the mint fees
    function treasuryAddress() external view returns (address);

    /// @notice Only callable by owner
    /// @dev MUST emit `SilicaPools__TreasuryAddressChanged`
    /// @param newTreasury The new address which receives the mint fees
    function setTreasuryAddress(address newTreasury) external;

    /// @notice The grace period, in seconds, after the pool's target start & end times during which no bounties are paid
    function bountyGracePeriod() external view returns (uint256);

    /// @notice Only callable by owner
    /// @dev MUST emit `SilicaPools__GracePeriodChanged`
    /// @param newGracePeriod The new grace period, in seconds
    function setBountyGracePeriod(uint256 newGracePeriod) external;

    /// @notice The maximum bounty, as a fraction of the pool's collateral, that can be paid out
    function maxBountyFraction() external view returns (uint256);

    /// @notice Only callable by owner
    /// @dev MUST emit `SilicaPools__MaxBountyFractionChanged`
    /// @param newMaxFraction The new maximum bounty, as a fraction of the pool's collateral
    function setMaxBountyFraction(uint256 newMaxFraction) external;

    /// @notice The rate at which the bounty as a fraction of collateral increases per second
    function bountyFractionIncreasePerSecond() external view returns (uint256);

    /// @notice Only callable by owner
    /// @dev MUST emit `SilicaPools__BountyIncreaseRateChanged`
    /// @param newIncreaseAmount The new rate at which the bounty as a fraction of collateral increases per second
    function setBountyFractionIncreasePerSecond(uint256 newIncreaseAmount) external;

    /// @notice Pause the protocol. Only callable by owner
    /// @dev MUST emit `SilicaPools__PauseProtocol`
    function pause() external;

    /// @notice Unpause the protocol. Only callable by owner
    /// @dev MUST emit `SilicaPools__UnpauseProtocol`
    function unpause() external;

    /// @notice Returns PoolState struct that matched the input hash
    /// @param poolHash The hash of the pool
    /// @return PoolState struct that matched the input hash
    function poolState(bytes32 poolHash) external view returns (PoolState memory);

    /// @notice Indicates if a given order has been cancelled
    /// @param orderHash The hash of the order
    /// @return True if the order has been cancelled, false otherwise
    function orderCancelled(bytes32 orderHash) external view returns (bool);

    /// @notice Takes collateral from the caller, equal to the maximum payout:
    ///         (cap - floor) * shares
    ///         denominated in `SilicaPool.payoutToken`
    /// @notice The caller must have approved this contract to transfer `SilicaPool.payoutToken`.
    /// @dev MUST emit `SilicaPools__CollateralizedMint`
    /// @param poolParams The pool to mint shares from.
    /// @param shares The number of long and short shares to mint.
    /// @param longRecipient Who should receive the long shares
    ///                      (if 0x0, then `msg.sender` receives)
    /// @param shortRecipient Who should receive the short shares
    ///                       (if 0x0, then `msg.sender` receives)
    function collateralizedMint(
        PoolParams calldata poolParams,
        uint256 shares,
        address longRecipient,
        address shortRecipient
    ) external;

    /// @notice Refunds mint collateral to the caller.
    /// @notice The caller must have approved this contract to transfer their long and short shares.
    /// @dev MUST emit `SilicaPools__SharesRefunded`
    /// @param poolParams The pool to refund from.
    /// @param shares Burn this many long shares and short shares.
    function collateralRefund(PoolParams[] calldata poolParams, uint256[] calldata shares) external;

    /// @notice Refunds mint collateral to the caller from the given pool.
    /// @notice The caller must have approved this contract to transfer long and short shares.
    /// @dev MUST emit `SilicaPools__SharesRefunded`
    /// @param poolParams The pool to refund from.
    function maxCollateralRefund(PoolParams[] calldata poolParams) external;

    /// @notice Transfers all `offeredLongShares`, `offeredUpfrontAmount`,
    ///         `requestedLongShares`, `requestedUpfrontAmount` from/to
    ///         the appropriate parties
    ///         (`offered` should go from `order.maker` to `msg.sender`,
    ///         `requested` should go from `msg.sender` to `order.maker`).
    ///         If `order.taker != 0x0` the order is only fillable by `order.taker`.
    ///         This function SHOULD revert if any fill fails.
    ///         `UpfrontAmount`s SHOULD be transferred before any `LongShares` are minted,
    ///         to reduce the required allowance for minting `LongShares`.
    /// @notice The caller must have approved this contract to transfer `requestedUpfrontToken`.
    /// @notice If the order is private, the caller must be the taker.
    /// @notice The input arrays must match in length.
    /// @dev MUST emit `SilicaPools__TradeHistoryEvent`
    /// @dev MUST emit `SilicaPools__VolumeAccountingEvent`
    /// @param orders The orders to fill.
    /// @param signatures The signature of the order maker.
    /// @param fractions Pass 1e18 to fill 100% of the order.
    function fillOrders(SilicaOrder[] calldata orders, bytes[] calldata signatures, uint256[] calldata fractions)
        external;

    /// @notice Cancels the given orders.
    /// @notice The caller must be the maker of each order.
    /// @dev MUST emit `SilicaPools__OrderCancelled`
    /// @param orders The orders to cancel.
    function cancelOrders(SilicaOrder[] calldata orders) external;

    /// @notice View function to estimate bounty for timely initialization of index tracking.
    /// @return If any of the pools are already started, then returns 0 for all bounties. Otherwise returns each bounty, quoted in the `payoutToken` of the pool.
    /// @dev uncappedBountyFraction = block.timestamp > targetEndTimestamp + gracePeriod ? (block.timestamp - targetEndTimestamp - gracePeriod) * bountyFractionIncreasePerSecond : 0;
    /// @dev bountyFraction = max(uncappedBountyFraction, maxBountyFraction)
    /// @dev bounty = bountyFraction * collateral / 10**18;
    function startBounty(PoolParams[] calldata poolParams) external view returns (uint256[] memory);

    /// @notice Records the starting `ISilicaIndex` state for any of
    ///         the specified pools which have not already been started.
    ///         Caller will be paid a bounty for each pool which was not
    ///         already started if called after the grace period.
    /// @notice Can only be called after pool's target start time.
    /// @dev Search `SilicaPool` for "MUST record at pool actual start".
    /// @dev MUST emit `SilicaPools__PoolStarted`
    /// @param poolParams The pools to start.
    function startPools(PoolParams[] calldata poolParams) external;

    /// @notice View function to estimate bounty for timely finalization of index tracking.
    /// @return If any of the pools are already ended, then returns 0 for all bounties. Otherwise returns each bounty, quoted in the `payoutToken` of the pool.
    /// @dev uncappedBountyFraction = block.timestamp > targetEndTimestamp + gracePeriod ? (block.timestamp - targetEndTimestamp - gracePeriod) * bountyFractionIncreasePerSecond : 0;
    /// @dev bountyFraction = max(uncappedBountyFraction, maxBountyFraction)
    /// @dev bounty = bountyFraction * collateral / 10**18;
    function endBounty(PoolParams[] calldata poolParams) external view returns (uint256[] memory);

    /// @notice Records the ending `ISilicaIndex` state for any of
    ///         the specified pools which have not already been ended.
    ///         Caller will be paid a bounty for each pool which was not
    ///         already ended if called after the grace period.
    /// @notice Can only be called after pool's target end time.
    /// @dev Search `SilicaPool` for "MUST record at pool actual end"
    /// @dev MUST emit `SilicaPools__PoolEnded`
    function endPools(PoolParams[] calldata poolParams) external;

    /// @notice Redeems shares for the payout token.
    /// @notice The caller must have approved this contract to transfer their long and short shares.
    /// @dev MUST emit `SilicaPools__SharesRedeemed`
    /// @param longPoolParams The pools to redeem long shares from.
    /// @param shortPoolParams The pools to redeem short shares from.
    function redeem(PoolParams[] calldata longPoolParams, PoolParams[] calldata shortPoolParams) external;

    /// @notice View function to preview the amount that would be returned for calling `redeemShort()` function.
    /// @param shortParams The paramters of the pool to redeem short positions from.
    /// @param account The address to redeem on behalf of.
    /// @return expectedPayout The amount to be redeemed, denoted in the pool's payoutToken.
    function viewRedeemShort(PoolParams calldata shortParams, address account)
        external
        view
        returns (uint256 expectedPayout);

    /// @notice View function to preview the amount that would be returned for calling `redeemLong()` function.
    /// @param longParams The paramters of the pool to redeem long positions from.
    /// @param account The addresses to redeem on behalf of.
    /// @return expectedPayout The amount to be redeemed, denoted in the pool's payoutToken.
    function viewRedeemLong(PoolParams calldata longParams, address account)
        external
        view
        returns (uint256 expectedPayout);

    /// @notice View function to preview the amount that would be returned for calling `collateralRefund()` function.
    /// @param poolParams The pool to refund from.
    /// @param shares The amount of long and short shares to be burnt.
    /// @return expectedRefunds The amount to be refunded, denoted in the pool's payoutToken.
    function viewCollateralRefund(PoolParams[] calldata poolParams, uint256[] calldata shares)
        external
        view
        returns (uint256[] memory expectedRefunds);

    /// @notice View function to preview the amount that would be returned for calling `maxCollateralRefund()` function
    /// @param poolparams The pool to refund from.
    /// @param accounts The accounts to refund on behalf of.
    /// @return expectedRefund The amount to be refunded, denoted in the pool's payoutToken.
    function viewMaxCollateralRefund(PoolParams[] calldata poolparams, address[] calldata accounts)
        external
        view
        returns (uint256[] memory expectedRefund);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/**
 * _    _ _    _           _
 *     / \  | | | _(_)_ __ ___ (_)_   _  __ _
 *    / _ \ | | |/ / | '_ ` _ \| | | | |/ _` |
 *   / ___ \| |   <| | | | | | | | |_| | (_| |
 *  /_/_  \_\_|_|\_\_|_| |_| |_|_|\__, |\__,_|
 *  |_ _|_ __   __| | _____  __   |___/
 *   | || '_ \ / _` |/ _ \ \/ /
 *   | || | | | (_| |  __/>  <
 *  |___|_| |_|\__,_|\___/_/\_\
 */

/// @title Silica Index Protocol
/// @author Alkimiya
/// @notice Required methods for a contract to provide an index to Silica Pools
interface ISilicaIndex {
    /// @return A name suitable for display as a page title or heading.
    /// @custom:example "Bitcoin Mining Yield"
    /// @custom:example "Lido Staked Ethereum Yield"
    /// @custom:example "Gas Costs"
    /// @custom:since 0.1.0
    function name() external view returns (string memory);

    /// @return Short name of the display units of `shares()`.
    /// @custom:example "PH/s"
    /// @custom:example "ystETH"
    /// @custom:example "kgas"
    /// @custom:since 0.1.0
    function symbol() external view returns (string memory);

    /// @return Decimal offset of `symbol()` vs indivisible units of `shares()`.
    /// @custom:example If 1 `symbol()` (e.g. "PH/s") represents
    ///                 1e15 `shares()` (e.g. H/s)
    ///                 then `decimals()` should return 15.
    /// @custom:example If 1 `symbol()` (e.g. "ystETH") represents
    ///                 1e18 `shares()` (e.g. wei)
    ///                 then `decimals()` should return 18.
    /// @custom:example If 1 `symbol()` (e.g. "kgas") represents
    ///                 1e6 `shares()` (e.g. milligas per block)
    ///                 then `decimals()` should return 6.
    /// @custom:since 0.1.0
    function decimals() external view returns (uint256);

    /// @notice Size of the position tracked by this index.
    ///         Clients SHOULD NOT assume that this value is constant.
    ///         Clients SHOULD denominate pool shares in the same denomination
    ///         as `ISilicaIndex.shares()` (see: `symbol()`, `decimals()`).
    /// @custom:example 1e15 H/s.
    /// @custom:example `ILido.getPooledEthByShares(1 ether)` stETH wei.
    /// @custom:example 1e3 milligas per block
    /// @custom:since 0.1.0
    function shares() external view returns (uint256);

    /// @notice Clients MAY transact in any token which is pegged to
    ///         `balanceToken()`, as long as the `decimals()` match.
    ///         Clients SHOULD NOT transact in a token which is not pegged to
    ///         `balanceToken()`; the resulting financial contract will not
    ///         make sense.
    /// @custom:example 0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599 (WBTC on mainnet)
    /// @custom:example 0xae7ab96520DE3A18E5e111B5EaAb095312D7fE84 (stETH on mainnet)
    /// @custom:example 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2 (WETH on mainnet)
    /// @custom:since 0.1.0
    function balanceToken() external view returns (address);

    /// @return Tracks the balance accumulated by the `shares()`.
    /// @notice This is not required to increase over time.
    ///         Clients SHOULD have defensive programming against underflow
    ///         when taking `balance() - initialBalance`.
    /// @custom:example WBTC earned per PH/s since Jan 1, 2023.
    /// @custom:example `ILido.getPooledEthByShares(1 ether)` stETH.
    /// @custom:example Running cost to transact 1 gas every block since Jan 1, 2023.
    /// @custom:since 0.1.0
    function balance() external view returns (uint256);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-1155 compliant contract, as defined in the
 * https://eips.ethereum.org/EIPS/eip-1155[ERC].
 */
interface IERC1155 is IERC165 {
    /**
     * @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
     */
    event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);

    /**
     * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
     * transfers.
     */
    event TransferBatch(
        address indexed operator,
        address indexed from,
        address indexed to,
        uint256[] ids,
        uint256[] values
    );

    /**
     * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
     * `approved`.
     */
    event ApprovalForAll(address indexed account, address indexed operator, bool approved);

    /**
     * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
     *
     * If an {URI} event was emitted for `id`, the standard
     * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
     * returned by {IERC1155MetadataURI-uri}.
     */
    event URI(string value, uint256 indexed id);

    /**
     * @dev Returns the value of tokens of token type `id` owned by `account`.
     */
    function balanceOf(address account, uint256 id) external view returns (uint256);

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
     *
     * Requirements:
     *
     * - `accounts` and `ids` must have the same length.
     */
    function balanceOfBatch(
        address[] calldata accounts,
        uint256[] calldata ids
    ) external view returns (uint256[] memory);

    /**
     * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
     *
     * Emits an {ApprovalForAll} event.
     *
     * Requirements:
     *
     * - `operator` cannot be the zero address.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address account, address operator) external view returns (bool);

    /**
     * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
     *
     * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
     * to an untrusted contract, when invoking {onERC1155Received} on the receiver.
     * Ensure to follow the checks-effects-interactions pattern and consider employing
     * reentrancy guards when interacting with untrusted contracts.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
     * - `from` must have a balance of tokens of type `id` of at least `value` amount.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
     *
     * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
     * to an untrusted contract, when invoking {onERC1155BatchReceived} on the receiver.
     * Ensure to follow the checks-effects-interactions pattern and consider employing
     * reentrancy guards when interacting with untrusted contracts.
     *
     * Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
     *
     * Requirements:
     *
     * - `ids` and `values` must have the same length.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     */
    function safeBatchTransferFrom(
        address from,
        address to,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/extensions/IERC1155MetadataURI.sol)

pragma solidity ^0.8.20;

import {IERC1155} from "../IERC1155.sol";

/**
 * @dev Interface of the optional ERC1155MetadataExtension interface, as defined
 * in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[ERC].
 */
interface IERC1155MetadataURI is IERC1155 {
    /**
     * @dev Returns the URI for token type `id`.
     *
     * If the `\{id\}` substring is present in the URI, it must be replaced by
     * clients with the actual token type ID.
     */
    function uri(uint256 id) external view returns (string memory);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/utils/ERC1155Utils.sol)

pragma solidity ^0.8.20;

import {IERC1155Receiver} from "../IERC1155Receiver.sol";
import {IERC1155Errors} from "../../../interfaces/draft-IERC6093.sol";

/**
 * @dev Library that provide common ERC-1155 utility functions.
 *
 * See https://eips.ethereum.org/EIPS/eip-1155[ERC-1155].
 *
 * _Available since v5.1._
 */
library ERC1155Utils {
    /**
     * @dev Performs an acceptance check for the provided `operator` by calling {IERC1155-onERC1155Received}
     * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
     *
     * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
     * Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
     * the transfer.
     */
    function checkOnERC1155Received(
        address operator,
        address from,
        address to,
        uint256 id,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length > 0) {
            try IERC1155Receiver(to).onERC1155Received(operator, from, id, value, data) returns (bytes4 response) {
                if (response != IERC1155Receiver.onERC1155Received.selector) {
                    // Tokens rejected
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    // non-IERC1155Receiver implementer
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                } else {
                    assembly ("memory-safe") {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }

    /**
     * @dev Performs a batch acceptance check for the provided `operator` by calling {IERC1155-onERC1155BatchReceived}
     * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
     *
     * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
     * Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
     * the transfer.
     */
    function checkOnERC1155BatchReceived(
        address operator,
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal {
        if (to.code.length > 0) {
            try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, values, data) returns (
                bytes4 response
            ) {
                if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
                    // Tokens rejected
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    // non-IERC1155Receiver implementer
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                } else {
                    assembly ("memory-safe") {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 23 of 40 : Arrays.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.

pragma solidity ^0.8.20;

import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";

/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    using SlotDerivation for bytes32;
    using StorageSlot for bytes32;

    /**
     * @dev Sort an array of uint256 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        uint256[] memory array,
        function(uint256, uint256) pure returns (bool) comp
    ) internal pure returns (uint256[] memory) {
        _quickSort(_begin(array), _end(array), comp);
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of uint256 in increasing order.
     */
    function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
        sort(array, Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of address (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        address[] memory array,
        function(address, address) pure returns (bool) comp
    ) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of address in increasing order.
     */
    function sort(address[] memory array) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of bytes32 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        bytes32[] memory array,
        function(bytes32, bytes32) pure returns (bool) comp
    ) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
     */
    function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
     * at end (exclusive). Sorting follows the `comp` comparator.
     *
     * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
     *
     * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
     * be used only if the limits are within a memory array.
     */
    function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
        unchecked {
            if (end - begin < 0x40) return;

            // Use first element as pivot
            uint256 pivot = _mload(begin);
            // Position where the pivot should be at the end of the loop
            uint256 pos = begin;

            for (uint256 it = begin + 0x20; it < end; it += 0x20) {
                if (comp(_mload(it), pivot)) {
                    // If the value stored at the iterator's position comes before the pivot, we increment the
                    // position of the pivot and move the value there.
                    pos += 0x20;
                    _swap(pos, it);
                }
            }

            _swap(begin, pos); // Swap pivot into place
            _quickSort(begin, pos, comp); // Sort the left side of the pivot
            _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
        }
    }

    /**
     * @dev Pointer to the memory location of the first element of `array`.
     */
    function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
        assembly ("memory-safe") {
            ptr := add(array, 0x20)
        }
    }

    /**
     * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
     * that comes just after the last element of the array.
     */
    function _end(uint256[] memory array) private pure returns (uint256 ptr) {
        unchecked {
            return _begin(array) + array.length * 0x20;
        }
    }

    /**
     * @dev Load memory word (as a uint256) at location `ptr`.
     */
    function _mload(uint256 ptr) private pure returns (uint256 value) {
        assembly {
            value := mload(ptr)
        }
    }

    /**
     * @dev Swaps the elements memory location `ptr1` and `ptr2`.
     */
    function _swap(uint256 ptr1, uint256 ptr2) private pure {
        assembly {
            let value1 := mload(ptr1)
            let value2 := mload(ptr2)
            mstore(ptr1, value2)
            mstore(ptr2, value1)
        }
    }

    /// @dev Helper: low level cast address memory array to uint256 memory array
    function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 memory array to uint256 memory array
    function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast address comp function to uint256 comp function
    function _castToUint256Comp(
        function(address, address) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 comp function to uint256 comp function
    function _castToUint256Comp(
        function(bytes32, bytes32) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * NOTE: The `array` is expected to be sorted in ascending order, and to
     * contain no repeated elements.
     *
     * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
     * support for repeated elements in the array. The {lowerBound} function should
     * be used instead.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && unsafeAccess(array, low - 1).value == element) {
            return low - 1;
        } else {
            return low;
        }
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value greater or equal than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
     */
    function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value strictly greater than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
     */
    function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Same as {lowerBound}, but with an array in memory.
     */
    function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Same as {upperBound}, but with an array in memory.
     */
    function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getAddressSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytes32Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getUint256Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(address[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(uint256[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 25 of 40 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return tryParseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return tryParseInt(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = bytes1(_unsafeReadBytesOffset(buffer, begin));
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return tryParseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x");
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        // check that input is the correct length
        bool hasPrefix = bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x");
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = tryParseHexUint(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

File 29 of 40 : FixedPointMathLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an overflow.
    error RPowOverflow();

    /// @dev The mantissa is too big to fit.
    error MantissaOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, due to an multiplication overflow.
    error SMulWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error SDivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /// @dev The input outside the acceptable domain.
    error OutOfDomain();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if gt(x, div(not(0), y)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
            if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if iszero(eq(div(z, y), x)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
    function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, WAD)
            // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
            if iszero(mul(y, eq(sdiv(z, WAD), x))) {
                mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
    function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    /// Note: This function is an approximation.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is less than 0.5 we return zero.
            // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
            if (x <= -41446531673892822313) return r;

            /// @solidity memory-safe-assembly
            assembly {
                // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                if iszero(slt(x, 135305999368893231589)) {
                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                    revert(0x1c, 0x04)
                }
            }

            // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // `k` is in the range `[-61, 195]`.

            // Evaluate using a (6, 7)-term rational approximation.
            // `p` is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already `2**96` too large.
                r := sdiv(p, q)
            }

            // r should be in the range `(0.09, 0.25) * 2**96`.

            // We now need to multiply r by:
            // - The scale factor `s ≈ 6.031367120`.
            // - The `2**k` factor from the range reduction.
            // - The `1e18 / 2**96` factor for base conversion.
            // We do this all at once, with an intermediate result in `2**213`
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function lnWad(int256 x) internal pure returns (int256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
            // We do this by multiplying by `2**96 / 10**18`. But since
            // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
            // and add `ln(2**96 / 10**18)` at the end.

            // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // We place the check here for more optimal stack operations.
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
            // forgefmt: disable-next-item
            r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x := shr(159, shl(r, x))

            // Evaluate using a (8, 8)-term rational approximation.
            // `p` is made monic, we will multiply by a scale factor later.
            // forgefmt: disable-next-item
            let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                sar(96, mul(add(43456485725739037958740375743393,
                sar(96, mul(add(24828157081833163892658089445524,
                sar(96, mul(add(3273285459638523848632254066296,
                    x), x))), x))), x)), 11111509109440967052023855526967)
            p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
            p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
            p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.

            // `q` is monic by convention.
            let q := add(5573035233440673466300451813936, x)
            q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
            q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
            q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
            q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
            q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
            q := add(909429971244387300277376558375, sar(96, mul(x, q)))

            // `p / q` is in the range `(0, 0.125) * 2**96`.

            // Finalization, we need to:
            // - Multiply by the scale factor `s = 5.549…`.
            // - Add `ln(2**96 / 10**18)`.
            // - Add `k * ln(2)`.
            // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.

            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already `2**96` too large.
            p := sdiv(p, q)
            // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
            p := mul(1677202110996718588342820967067443963516166, p)
            // Add `ln(2) * k * 5**18 * 2**192`.
            // forgefmt: disable-next-item
            p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
            // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
            p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
            // Base conversion: mul `2**18 / 2**192`.
            r := sar(174, p)
        }
    }

    /// @dev Returns `W_0(x)`, denominated in `WAD`.
    /// See: https://en.wikipedia.org/wiki/Lambert_W_function
    /// a.k.a. Product log function. This is an approximation of the principal branch.
    /// Note: This function is an approximation. Monotonically increasing.
    function lambertW0Wad(int256 x) internal pure returns (int256 w) {
        // forgefmt: disable-next-item
        unchecked {
            if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
            (int256 wad, int256 p) = (int256(WAD), x);
            uint256 c; // Whether we need to avoid catastrophic cancellation.
            uint256 i = 4; // Number of iterations.
            if (w <= 0x1ffffffffffff) {
                if (-0x4000000000000 <= w) {
                    i = 1; // Inputs near zero only take one step to converge.
                } else if (w <= -0x3ffffffffffffff) {
                    i = 32; // Inputs near `-1/e` take very long to converge.
                }
            } else if (uint256(w >> 63) == uint256(0)) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Inline log2 for more performance, since the range is small.
                    let v := shr(49, w)
                    let l := shl(3, lt(0xff, v))
                    l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                    w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                    c := gt(l, 60)
                    i := add(2, add(gt(l, 53), c))
                }
            } else {
                int256 ll = lnWad(w = lnWad(w));
                /// @solidity memory-safe-assembly
                assembly {
                    // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                    w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                    i := add(3, iszero(shr(68, x)))
                    c := iszero(shr(143, x))
                }
                if (c == uint256(0)) {
                    do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                        int256 e = expWad(w);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let t := mul(w, div(e, wad))
                            w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                        }
                        if (p <= w) break;
                        p = w;
                    } while (--i != uint256(0));
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sub(w, sgt(w, 2))
                    }
                    return w;
                }
            }
            do { // Otherwise, use Halley's for faster convergence.
                int256 e = expWad(w);
                /// @solidity memory-safe-assembly
                assembly {
                    let t := add(w, wad)
                    let s := sub(mul(w, e), mul(x, wad))
                    w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                }
                if (p <= w) break;
                p = w;
            } while (--i != c);
            /// @solidity memory-safe-assembly
            assembly {
                w := sub(w, sgt(w, 2))
            }
            // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
            // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
            if (c == uint256(0)) return w;
            int256 t = w | 1;
            /// @solidity memory-safe-assembly
            assembly {
                x := sdiv(mul(x, wad), t)
            }
            x = (t * (wad + lnWad(x)));
            /// @solidity memory-safe-assembly
            assembly {
                w := sdiv(x, add(wad, t))
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // 512-bit multiply `[p1 p0] = x * y`.
            // Compute the product mod `2**256` and mod `2**256 - 1`
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that `product = p1 * 2**256 + p0`.

            // Temporarily use `result` as `p0` to save gas.
            result := mul(x, y) // Lower 256 bits of `x * y`.
            for {} 1 {} {
                // If overflows.
                if iszero(mul(or(iszero(x), eq(div(result, x), y)), d)) {
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(result, lt(mm, result))) // Upper 256 bits of `x * y`.

                    /*------------------- 512 by 256 division --------------------*/

                    // Make division exact by subtracting the remainder from `[p1 p0]`.
                    let r := mulmod(x, y, d) // Compute remainder using mulmod.
                    let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                    // Make sure the result is less than `2**256`. Also prevents `d == 0`.
                    // Placing the check here seems to give more optimal stack operations.
                    if iszero(gt(d, p1)) {
                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    d := div(d, t) // Divide `d` by `t`, which is a power of two.
                    // Invert `d mod 2**256`
                    // Now that `d` is an odd number, it has an inverse
                    // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                    // Compute the inverse by starting with a seed that is correct
                    // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                    let inv := xor(2, mul(3, d))
                    // Now use Newton-Raphson iteration to improve the precision.
                    // Thanks to Hensel's lifting lemma, this also works in modular
                    // arithmetic, doubling the correct bits in each step.
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                    result :=
                        mul(
                            // Divide [p1 p0] by the factors of two.
                            // Shift in bits from `p1` into `p0`. For this we need
                            // to flip `t` such that it is `2**256 / t`.
                            or(
                                mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)),
                                div(sub(result, r), t)
                            ),
                            mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                        )
                    break
                }
                result := div(result, d)
                break
            }
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
    /// Performs the full 512 bit calculation regardless.
    function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := mul(x, y)
            let mm := mulmod(x, y, not(0))
            let p1 := sub(mm, add(result, lt(mm, result)))
            let t := and(d, sub(0, d))
            let r := mulmod(x, y, d)
            d := div(d, t)
            let inv := xor(2, mul(3, d))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            result :=
                mul(
                    or(mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)), div(sub(result, r), t)),
                    mul(sub(2, mul(d, inv)), inv)
                )
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
        result = fullMulDiv(x, y, d);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(x, y, d) {
                result := add(result, 1)
                if iszero(result) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Returns `floor(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(z, d)
        }
    }

    /// @dev Returns `ceil(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(z, d))), div(z, d))
        }
    }

    /// @dev Returns `ceil(x / d)`.
    /// Reverts if `d` is zero.
    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(d) {
                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, d))), div(x, d))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
    /// Reverts if the computation overflows.
    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
            if x {
                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                let half := shr(1, b) // Divide `b` by 2.
                // Divide `y` by 2 every iteration.
                for { y := shr(1, y) } y { y := shr(1, y) } {
                    let xx := mul(x, x) // Store x squared.
                    let xxRound := add(xx, half) // Round to the nearest number.
                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                    if or(lt(xxRound, xx), shr(128, x)) {
                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                    // If `y` is odd:
                    if and(y, 1) {
                        let zx := mul(z, x) // Compute `z * x`.
                        let zxRound := add(zx, half) // Round to the nearest number.
                        // If `z * x` overflowed or `zx + half` overflowed:
                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                            // Revert if `x` is non-zero.
                            if x {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                        }
                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                    }
                }
            }
        }
    }

    /// @dev Returns the square root of `x`, rounded down.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the cube root of `x`, rounded down.
    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
    /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // Makeshift lookup table to nudge the approximate log2 result.
            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
            // Newton-Raphson's.
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            // Round down.
            z := sub(z, lt(div(x, mul(z, z)), z))
        }
    }

    /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
            z = (1 + sqrt(x)) * 10 ** 9;
            z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
        }
        /// @solidity memory-safe-assembly
        assembly {
            z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
        }
    }

    /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
            z = (1 + cbrt(x)) * 10 ** 12;
            z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
        }
        /// @solidity memory-safe-assembly
        assembly {
            let p := x
            for {} 1 {} {
                if iszero(shr(229, p)) {
                    if iszero(shr(199, p)) {
                        p := mul(p, 100000000000000000) // 10 ** 17.
                        break
                    }
                    p := mul(p, 100000000) // 10 ** 8.
                    break
                }
                if iszero(shr(249, p)) { p := mul(p, 100) }
                break
            }
            let t := mulmod(mul(z, z), z, p)
            z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := 1
            if iszero(lt(x, 58)) {
                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                revert(0x1c, 0x04)
            }
            for {} x { x := sub(x, 1) } { result := mul(result, x) }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    /// Returns 0 if `x` is zero.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        r = log2(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(r, 1), x))
        }
    }

    /// @dev Returns the log10 of `x`.
    /// Returns 0 if `x` is zero.
    function log10(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                x := div(x, 100000000000000000000000000000000000000)
                r := 38
            }
            if iszero(lt(x, 100000000000000000000)) {
                x := div(x, 100000000000000000000)
                r := add(r, 20)
            }
            if iszero(lt(x, 10000000000)) {
                x := div(x, 10000000000)
                r := add(r, 10)
            }
            if iszero(lt(x, 100000)) {
                x := div(x, 100000)
                r := add(r, 5)
            }
            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
        }
    }

    /// @dev Returns the log10 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log10Up(uint256 x) internal pure returns (uint256 r) {
        r = log10(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(exp(10, r), x))
        }
    }

    /// @dev Returns the log256 of `x`.
    /// Returns 0 if `x` is zero.
    function log256(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(shr(3, r), lt(0xff, shr(r, x)))
        }
    }

    /// @dev Returns the log256 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log256Up(uint256 x) internal pure returns (uint256 r) {
        r = log256(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(shl(3, r), 1), x))
        }
    }

    /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
    /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
    function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
        /// @solidity memory-safe-assembly
        assembly {
            mantissa := x
            if mantissa {
                if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                    mantissa := div(mantissa, 1000000000000000000000000000000000)
                    exponent := 33
                }
                if iszero(mod(mantissa, 10000000000000000000)) {
                    mantissa := div(mantissa, 10000000000000000000)
                    exponent := add(exponent, 19)
                }
                if iszero(mod(mantissa, 1000000000000)) {
                    mantissa := div(mantissa, 1000000000000)
                    exponent := add(exponent, 12)
                }
                if iszero(mod(mantissa, 1000000)) {
                    mantissa := div(mantissa, 1000000)
                    exponent := add(exponent, 6)
                }
                if iszero(mod(mantissa, 10000)) {
                    mantissa := div(mantissa, 10000)
                    exponent := add(exponent, 4)
                }
                if iszero(mod(mantissa, 100)) {
                    mantissa := div(mantissa, 100)
                    exponent := add(exponent, 2)
                }
                if iszero(mod(mantissa, 10)) {
                    mantissa := div(mantissa, 10)
                    exponent := add(exponent, 1)
                }
            }
        }
    }

    /// @dev Convenience function for packing `x` into a smaller number using `sci`.
    /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
    /// The `exponent` will be in bits [0..6] (the lower 7 bits).
    /// Use `SafeCastLib` to safely ensure that the `packed` number is small
    /// enough to fit in the desired unsigned integer type:
    /// ```
    ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
    /// ```
    function packSci(uint256 x) internal pure returns (uint256 packed) {
        (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
        /// @solidity memory-safe-assembly
        assembly {
            if shr(249, x) {
                mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                revert(0x1c, 0x04)
            }
            packed := or(shl(7, x), packed)
        }
    }

    /// @dev Convenience function for unpacking a packed number from `packSci`.
    function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
        unchecked {
            unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards zero.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = (x & y) + ((x ^ y) >> 1);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
    function avg(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        unchecked {
            z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
        }
    }

    /// @dev Returns greatest common divisor of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
        internal
        pure
        returns (uint256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        unchecked {
            if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
            return a - fullMulDiv(a - b, t - begin, end - begin);
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
        internal
        pure
        returns (int256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        // forgefmt: disable-next-item
        unchecked {
            if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
                uint256(t - begin), uint256(end - begin)));
            return int256(uint256(a) - fullMulDiv(uint256(a - b),
                uint256(t - begin), uint256(end - begin)));
        }
    }

    /// @dev Returns if `x` is an even number. Some people may need this.
    function isEven(uint256 x) internal pure returns (bool) {
        return x & uint256(1) == uint256(0);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RAW NUMBER OPERATIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := smod(x, y)
        }
    }

    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := addmod(x, y, d)
        }
    }

    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mulmod(x, y, d)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155Receiver.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Interface that must be implemented by smart contracts in order to receive
 * ERC-1155 token transfers.
 */
interface IERC1155Receiver is IERC165 {
    /**
     * @dev Handles the receipt of a single ERC-1155 token type. This function is
     * called at the end of a `safeTransferFrom` after the balance has been updated.
     *
     * NOTE: To accept the transfer, this must return
     * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
     * (i.e. 0xf23a6e61, or its own function selector).
     *
     * @param operator The address which initiated the transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param id The ID of the token being transferred
     * @param value The amount of tokens being transferred
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
     */
    function onERC1155Received(
        address operator,
        address from,
        uint256 id,
        uint256 value,
        bytes calldata data
    ) external returns (bytes4);

    /**
     * @dev Handles the receipt of a multiple ERC-1155 token types. This function
     * is called at the end of a `safeBatchTransferFrom` after the balances have
     * been updated.
     *
     * NOTE: To accept the transfer(s), this must return
     * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
     * (i.e. 0xbc197c81, or its own function selector).
     *
     * @param operator The address which initiated the batch transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param ids An array containing ids of each token being transferred (order and length must match values array)
     * @param values An array containing amounts of each token being transferred (order and length must match ids array)
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
     */
    function onERC1155BatchReceived(
        address operator,
        address from,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to compare values.
 *
 * _Available since v5.1._
 */
library Comparators {
    function lt(uint256 a, uint256 b) internal pure returns (bool) {
        return a < b;
    }

    function gt(uint256 a, uint256 b) internal pure returns (bool) {
        return a > b;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
 * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
 * the solidity language / compiler.
 *
 * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
 *
 * Example usage:
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using StorageSlot for bytes32;
 *     using SlotDerivation for bytes32;
 *
 *     // Declare a namespace
 *     string private constant _NAMESPACE = "<namespace>" // eg. OpenZeppelin.Slot
 *
 *     function setValueInNamespace(uint256 key, address newValue) internal {
 *         _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
 *     }
 *
 *     function getValueInNamespace(uint256 key) internal view returns (address) {
 *         return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {StorageSlot}.
 *
 * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
 * upgrade safety will ignore the slots accessed through this library.
 *
 * _Available since v5.1._
 */
library SlotDerivation {
    /**
     * @dev Derive an ERC-7201 slot from a string (namespace).
     */
    function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
        assembly ("memory-safe") {
            mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
            slot := and(keccak256(0x00, 0x20), not(0xff))
        }
    }

    /**
     * @dev Add an offset to a slot to get the n-th element of a structure or an array.
     */
    function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
        unchecked {
            return bytes32(uint256(slot) + pos);
        }
    }

    /**
     * @dev Derive the location of the first element in an array from the slot where the length is stored.
     */
    function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, slot)
            result := keccak256(0x00, 0x20)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, and(key, shr(96, not(0))))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, iszero(iszero(key)))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 36 of 40 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 37 of 40 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

File 38 of 40 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/=lib/openzeppelin-contracts/contracts/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "forge-std/=lib/forge-std/src/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "solady/=lib/solady/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "viaIR": true,
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"uint256","name":"startFeeBps","type":"uint256"},{"internalType":"address","name":"initialOwner","type":"address"},{"internalType":"address","name":"alkimiyaTreasury","type":"address"},{"internalType":"uint256","name":"gracePeriod","type":"uint256"},{"internalType":"uint256","name":"maxBountyFrac","type":"uint256"},{"internalType":"uint256","name":"bountyIncreasePerSecond","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC1155InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC1155InvalidApprover","type":"error"},{"inputs":[{"internalType":"uint256","name":"idsLength","type":"uint256"},{"internalType":"uint256","name":"valuesLength","type":"uint256"}],"name":"ERC1155InvalidArrayLength","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC1155InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC1155InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC1155InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC1155MissingApprovalForAll","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"InvalidSilicaIndex","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"SilicaPools__ArrayLengthMismatch","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"address","name":"expectedCaller","type":"address"}],"name":"SilicaPools__InvalidCaller","type":"error"},{"inputs":[{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"SilicaPools__InvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"expiry","type":"uint256"},{"internalType":"uint256","name":"blockTimestamp","type":"uint256"}],"name":"SilicaPools__OrderExpired","type":"error"},{"inputs":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"SilicaPools__OrderIsCancelled","type":"error"},{"inputs":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"SilicaPools__PartialOrdersNotSupported","type":"error"},{"inputs":[],"name":"SilicaPools__Paused","type":"error"},{"inputs":[{"internalType":"bytes32","name":"poolHash","type":"bytes32"}],"name":"SilicaPools__PoolAlreadyEnded","type":"error"},{"inputs":[{"internalType":"bytes32","name":"poolHash","type":"bytes32"}],"name":"SilicaPools__PoolAlreadyStarted","type":"error"},{"inputs":[{"internalType":"bytes32","name":"poolHash","type":"bytes32"}],"name":"SilicaPools__PoolNotEnded","type":"error"},{"inputs":[{"internalType":"uint256","name":"attemptedTimestamp","type":"uint256"},{"internalType":"uint256","name":"targetTimestamp","type":"uint256"}],"name":"SilicaPools__TooEarlyToEnd","type":"error"},{"inputs":[{"internalType":"uint256","name":"attemptedTimestamp","type":"uint256"},{"internalType":"uint256","name":"targetTimestamp","type":"uint256"}],"name":"SilicaPools__TooEarlyToStart","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"addressToBlacklist","type":"address"}],"name":"SilicaIndexBlacklisted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"addressToWhitelist","type":"address"}],"name":"SilicaIndexWhitelisted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newRate","type":"uint256"}],"name":"SilicaPools__BountyIncreaseRateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"poolHash","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"bountyAmount","type":"uint256"},{"indexed":false,"internalType":"address","name":"receiver","type":"address"}],"name":"SilicaPools__BountyPaid","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"poolHash","type":"bytes32"},{"indexed":false,"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"longTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shortTokenId","type":"uint256"},{"indexed":false,"internalType":"address","name":"shortRecipient","type":"address"},{"indexed":false,"internalType":"address","name":"longRecipient","type":"address"},{"indexed":true,"internalType":"address","name":"payer","type":"address"},{"indexed":false,"internalType":"uint256","name":"sharesMinted","type":"uint256"},{"indexed":false,"internalType":"address","name":"collateralToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"collateralAmount","type":"uint256"}],"name":"SilicaPools__CollateralizedMint","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newFeeBps","type":"uint256"}],"name":"SilicaPools__FillFeeChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"payer","type":"address"},{"indexed":true,"internalType":"bytes32","name":"poolHash","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"address","name":"tokenPaid","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"SilicaPools__FillFeePaid","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newGracePeriod","type":"uint256"}],"name":"SilicaPools__GracePeriodChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newMaxFraction","type":"uint256"}],"name":"SilicaPools__MaxBountyFractionChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"SilicaPools__OrderCancelled","type":"event"},{"anonymous":false,"inputs":[],"name":"SilicaPools__PauseProtocol","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"poolHash","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"indexBalanceAtEnd","type":"uint256"},{"indexed":false,"internalType":"uint128","name":"balanceChangePerShare","type":"uint128"}],"name":"SilicaPools__PoolEnded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"poolHash","type":"bytes32"},{"indexed":false,"internalType":"uint128","name":"floor","type":"uint128"},{"indexed":false,"internalType":"uint128","name":"cap","type":"uint128"},{"indexed":false,"internalType":"uint48","name":"targetStartTime","type":"uint48"},{"indexed":false,"internalType":"uint48","name":"targetEndTime","type":"uint48"},{"indexed":false,"internalType":"address","name":"index","type":"address"},{"indexed":false,"internalType":"address","name":"payoutToken","type":"address"},{"indexed":false,"internalType":"uint128","name":"indexSharesAtStart","type":"uint128"},{"indexed":false,"internalType":"uint128","name":"indexBalanceAtStart","type":"uint128"},{"indexed":false,"internalType":"uint256","name":"longTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shortTokenId","type":"uint256"}],"name":"SilicaPools__PoolStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"poolHash","type":"bytes32"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"sharesRedeemed","type":"uint256"},{"indexed":false,"internalType":"address","name":"payoutToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"payoutTokenAmount","type":"uint256"}],"name":"SilicaPools__SharesRedeemed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"poolHash","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"longTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shortTokenId","type":"uint256"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":true,"internalType":"address","name":"payoutToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"sharesRefunded","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"collateralRefunded","type":"uint256"}],"name":"SilicaPools__SharesRefunded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"poolHash","type":"bytes32"},{"indexed":false,"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"indexed":true,"internalType":"address","name":"poolTokenRecipient","type":"address"},{"indexed":true,"internalType":"address","name":"erc20Recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"poolTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"poolTokenAmount","type":"uint256"},{"indexed":false,"internalType":"address","name":"erc20Token","type":"address"},{"indexed":false,"internalType":"uint256","name":"erc20Amount","type":"uint256"}],"name":"SilicaPools__Swap","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"indexed":true,"internalType":"address","name":"maker","type":"address"},{"indexed":true,"internalType":"address","name":"taker","type":"address"},{"indexed":false,"internalType":"bytes32","name":"offeredPoolHash","type":"bytes32"},{"indexed":false,"internalType":"bytes32","name":"requestedPoolHash","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"requestedUpfrontAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"offeredUpfrontAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"filledFraction","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"remainingFraction","type":"uint256"}],"name":"SilicaPools__TradeHistoryEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newTreasuryAddress","type":"address"}],"name":"SilicaPools__TreasuryAddressChanged","type":"event"},{"anonymous":false,"inputs":[],"name":"SilicaPools__UnpauseProtocol","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"values","type":"uint256[]"}],"name":"TransferBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"TransferSingle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"value","type":"string"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"URI","type":"event"},{"inputs":[],"name":"INVERSE_BASIS_POINT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_FILL_FEE_BPS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TOKENID_SALT","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"balanceOfBatch","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"addressToBlacklist","type":"address"}],"name":"blacklistSilicaIndex","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"bountyFractionIncreasePerSecond","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bountyGracePeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"maker","type":"address"},{"internalType":"address","name":"taker","type":"address"},{"internalType":"uint48","name":"expiry","type":"uint48"},{"internalType":"address","name":"offeredUpfrontToken","type":"address"},{"internalType":"uint128","name":"offeredUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"offeredLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"offeredLongShares","type":"uint128"},{"internalType":"address","name":"requestedUpfrontToken","type":"address"},{"internalType":"uint128","name":"requestedUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"requestedLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"requestedLongShares","type":"uint128"}],"internalType":"struct ISilicaPools.SilicaOrder[]","name":"orders","type":"tuple[]"}],"name":"cancelOrders","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"poolParams","type":"tuple[]"},{"internalType":"uint256[]","name":"shares","type":"uint256[]"}],"name":"collateralRefund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"poolParams","type":"tuple"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"longRecipient","type":"address"},{"internalType":"address","name":"shortRecipient","type":"address"}],"name":"collateralizedMint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"disablePartialFills","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"domainSeparatorV4","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"enablePartialFills","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"poolParams","type":"tuple[]"}],"name":"endBounty","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"poolParams","type":"tuple"}],"name":"endPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"poolParams","type":"tuple[]"}],"name":"endPools","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"fillFeeBps","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"maker","type":"address"},{"internalType":"address","name":"taker","type":"address"},{"internalType":"uint48","name":"expiry","type":"uint48"},{"internalType":"address","name":"offeredUpfrontToken","type":"address"},{"internalType":"uint128","name":"offeredUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"offeredLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"offeredLongShares","type":"uint128"},{"internalType":"address","name":"requestedUpfrontToken","type":"address"},{"internalType":"uint128","name":"requestedUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"requestedLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"requestedLongShares","type":"uint128"}],"internalType":"struct ISilicaPools.SilicaOrder","name":"order","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"uint256","name":"fraction","type":"uint256"}],"name":"fillOrder","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"maker","type":"address"},{"internalType":"address","name":"taker","type":"address"},{"internalType":"uint48","name":"expiry","type":"uint48"},{"internalType":"address","name":"offeredUpfrontToken","type":"address"},{"internalType":"uint128","name":"offeredUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"offeredLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"offeredLongShares","type":"uint128"},{"internalType":"address","name":"requestedUpfrontToken","type":"address"},{"internalType":"uint128","name":"requestedUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"requestedLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"requestedLongShares","type":"uint128"}],"internalType":"struct ISilicaPools.SilicaOrder[]","name":"orders","type":"tuple[]"},{"internalType":"bytes[]","name":"signatures","type":"bytes[]"},{"internalType":"uint256[]","name":"fractions","type":"uint256[]"}],"name":"fillOrders","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"longTokenId","type":"uint256"}],"name":"fromLongTokenId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"shortTokenId","type":"uint256"}],"name":"fromShortTokenId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"maker","type":"address"},{"internalType":"address","name":"taker","type":"address"},{"internalType":"uint48","name":"expiry","type":"uint48"},{"internalType":"address","name":"offeredUpfrontToken","type":"address"},{"internalType":"uint128","name":"offeredUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"offeredLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"offeredLongShares","type":"uint128"},{"internalType":"address","name":"requestedUpfrontToken","type":"address"},{"internalType":"uint128","name":"requestedUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"requestedLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"requestedLongShares","type":"uint128"}],"internalType":"struct ISilicaPools.SilicaOrder","name":"order","type":"tuple"}],"name":"hashOrder","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"maker","type":"address"},{"internalType":"address","name":"taker","type":"address"},{"internalType":"uint48","name":"expiry","type":"uint48"},{"internalType":"address","name":"offeredUpfrontToken","type":"address"},{"internalType":"uint128","name":"offeredUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"offeredLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"offeredLongShares","type":"uint128"},{"internalType":"address","name":"requestedUpfrontToken","type":"address"},{"internalType":"uint128","name":"requestedUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"requestedLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"requestedLongShares","type":"uint128"}],"internalType":"struct ISilicaPools.SilicaOrder","name":"order","type":"tuple"},{"internalType":"bytes32","name":"domainSeparator","type":"bytes32"}],"name":"hashOrder","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"poolParams","type":"tuple"}],"name":"hashPool","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxBountyFraction","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"poolParams","type":"tuple[]"}],"name":"maxCollateralRefund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"orderCancelled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"partialFillsEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolHash","type":"bytes32"}],"name":"poolState","outputs":[{"components":[{"internalType":"uint128","name":"collateralMinted","type":"uint128"},{"internalType":"uint128","name":"sharesMinted","type":"uint128"},{"internalType":"uint128","name":"indexShares","type":"uint128"},{"internalType":"uint128","name":"indexInitialBalance","type":"uint128"},{"internalType":"uint48","name":"actualStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"actualEndTimestamp","type":"uint48"},{"internalType":"uint128","name":"balanceChangePerShare","type":"uint128"}],"internalType":"struct ISilicaPools.PoolState","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"longPoolParams","type":"tuple[]"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"shortPoolParams","type":"tuple[]"}],"name":"redeem","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"longParams","type":"tuple"}],"name":"redeemLong","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"shortParams","type":"tuple"}],"name":"redeemShort","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sBountyFractionIncreasePerSecond","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sBountyGracePeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sMaxBountyFraction","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeBatchTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newIncreaseAmount","type":"uint256"}],"name":"setBountyFractionIncreasePerSecond","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newGracePeriod","type":"uint256"}],"name":"setBountyGracePeriod","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newFillFeeBps","type":"uint256"}],"name":"setFillFeeBps","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newMaxFraction","type":"uint256"}],"name":"setMaxBountyFraction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newTreasury","type":"address"}],"name":"setTreasuryAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"poolParams","type":"tuple[]"}],"name":"startBounty","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"poolParams","type":"tuple"}],"name":"startPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"poolParams","type":"tuple[]"}],"name":"startPools","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolHash","type":"bytes32"}],"name":"toLongTokenId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolHash","type":"bytes32"}],"name":"toShortTokenId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"treasuryAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"uri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"poolParams","type":"tuple[]"},{"internalType":"uint256[]","name":"shares","type":"uint256[]"}],"name":"viewCollateralRefund","outputs":[{"internalType":"uint256[]","name":"expectedRefunds","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"poolParams","type":"tuple[]"},{"internalType":"address[]","name":"accounts","type":"address[]"}],"name":"viewMaxCollateralRefund","outputs":[{"internalType":"uint256[]","name":"expectedRefund","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"longParams","type":"tuple"},{"internalType":"address","name":"account","type":"address"}],"name":"viewRedeemLong","outputs":[{"internalType":"uint256","name":"expectedPayout","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"shortParams","type":"tuple"},{"internalType":"address","name":"account","type":"address"}],"name":"viewRedeemShort","outputs":[{"internalType":"uint256","name":"expectedPayout","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"addressToWhitelist","type":"address"}],"name":"whitelistSilicaIndex","outputs":[],"stateMutability":"nonpayable","type":"function"}]

61016080604052346104925760c081615de580380380916100208285610497565b833981010312610492578051610038602083016104ba565b610044604084016104ba565b9160608401519260a0608086015195015192604051610064604082610497565b600b815260208101906a53696c696361506f6f6c7360a81b82526040519161008d604084610497565b600183526020830191603160f81b83526040516100ab602082610497565b60008082529060025490600182811c92168015610472575b602083101461045c5781601f8493116103ec575b50602090601f831160011461038457600092610379575b50508160011b916000199060031b1c1916176002555b61010d816104eb565b6101205261011a84610699565b61014052519020918260e05251902080610100524660a0526040519060208201927f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f8452604083015260608201524660808201523060a082015260a0815261018360c082610497565b5190206080523060c0526001600160a01b0316948515610363577f2c8741c51ef15572035be75af521ed4878a6e3406c7fdea3494b5fbffdc107c660207f9ee70d55a8fb5949bbafdc2c166db4f6b56a7f6827fcfc91202d433174fddd0d947fa8d4f499ed89ed61915e14bec2bd7bea8fb6c9701f14ce893bbc2e847d920d328280997fd5862782a16cfe1b4efd87aa8ff52fe97b1b3300d25bbf2719b5cbd413cd9cd48280997f2e54a66023bd119d7da51cb6619e461b9f2d33f3749d492dcec52d5c6ce5f34b9e60018060a01b0319600654166006556005548160018060a01b031982161760055560018060a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a360016007556011805461ff00191690556001600160a01b0316956102bf8715156104ce565b600980546001600160a01b031916881790556102df6103e88211156104ce565b8060085583600e5589600f558c601055604051908152a1604051908152a1604051908152a1604051908152a1604051908152a16040516155ad9081610838823960805181614484015260a0518161453b015260c0518161444e015260e051816144d3015261010051816144f901526101205181611dce01526101405181611dfa0152f35b631e4fbdf760e01b600052600060045260246000fd5b0151905038806100ee565b600260009081528281209350601f198516905b8181106103d457509084600195949392106103bb575b505050811b01600255610104565b015160001960f88460031b161c191690553880806103ad565b92936020600181928786015181550195019301610397565b60026000529091507f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace601f840160051c81019160208510610452575b90601f859493920160051c01905b81811061044357506100d7565b60008155849350600101610436565b9091508190610428565b634e487b7160e01b600052602260045260246000fd5b91607f16916100c3565b634e487b7160e01b600052604160045260246000fd5b600080fd5b601f909101601f19168101906001600160401b0382119082101761047c57604052565b51906001600160a01b038216820361049257565b156104d557565b634e487b7160e01b600052600160045260246000fd5b90815160208110600014610583575090601f815111610527576020815191015160208210610517571790565b6000198260200360031b1b161790565b6040519063305a27a960e01b8252602060048301528181519182602483015260005b83811061056b5750508160006044809484010152601f80199101168101030190fd5b60208282018101516044878401015285935001610549565b6001600160401b03811161047c57600354600181811c9116801561068f575b602082101461045c57601f8111610659575b50602092601f82116001146105f457928192936000926105e9575b50508160011b916000199060031b1c19161760035560ff90565b0151905038806105cf565b601f198216936003600052806000209160005b8681106106415750836001959610610628575b505050811b0160035560ff90565b015160001960f88460031b161c1916905538808061061a565b91926020600181928685015181550194019201610607565b6003600052601f6020600020910160051c810190601f830160051c015b81811061068357506105b4565b60008155600101610676565b90607f16906105a2565b90815160208110600014610721575090601f8151116106c5576020815191015160208210610517571790565b6040519063305a27a960e01b8252602060048301528181519182602483015260005b8381106107095750508160006044809484010152601f80199101168101030190fd5b602082820181015160448784010152859350016106e7565b6001600160401b03811161047c57600454600181811c9116801561082d575b602082101461045c57601f81116107f7575b50602092601f82116001146107925792819293600092610787575b50508160011b916000199060031b1c19161760045560ff90565b01519050388061076d565b601f198216936004600052806000209160005b8681106107df57508360019596106107c6575b505050811b0160045560ff90565b015160001960f88460031b161c191690553880806107b8565b919260206001819286850151815501940192016107a5565b6004600052601f6020600020910160051c810190601f830160051c015b8181106108215750610752565b60008155600101610814565b90607f169061074056fe6080604052600436101561001257600080fd5b60003560e01c8062fdd58e1461042d57806301ffc9a7146104285780630e89341c1461042357806313208d1b1461041e57806319b87556146104195780631d0fa9cf1461036a57806324b3e7ec146104145780632556bc151461040f57806329fa8b871461040a5780632eb2c2d6146104055780632fece5ae14610400578063312f14ba146103fb57806332afed8f146103f65780633305d6b1146103f157806334d2efe5146103ec57806337d59827146103e75780633ba1a0df146103e25780633f4ba83a146103dd5780634cd21543146103d85780634e1273f4146103d357806351594173146103ce5780635396fae5146103c95780635889bf5e146103c45780635b72928c146103bf5780635c975abb146103ba5780636605bfda146103b55780636c0dc97914610383578063715018a6146103b057806378e890ba146103ab57806379ba5097146103a65780637d1a7558146103a15780637e28c0521461039c5780638456cb591461039757806384b0196e14610392578063880185401461038d5780638ac86f1a146103885780638c8c29ce146103835780638da5cb5b1461037e5780638f409d2614610379578063934ed73214610374578063992cc7cb1461036f5780639c9b381c1461036a578063a0fadc3514610365578063a22cb46514610360578063a2b597ee1461035b578063bda9f38614610310578063c4cde46b14610356578063c5f956af14610351578063c837a9411461034c578063cae6047f14610347578063ccaaa52014610342578063d6dc6b041461033d578063d7e5ae9f14610329578063de30f4a714610338578063e0b01bac14610333578063e1c6709114610306578063e30c39781461032e578063e5c168a814610329578063e985e9c514610324578063ec9f8ae81461031f578063f0cd67511461031a578063f242432a14610315578063f249958514610310578063f2fde38b1461030b578063f50ec60214610306578063f5d213f2146103015763fe2de08c146102fc57600080fd5b612bd4565b612982565b612695565b612911565b61233e565b6127fa565b612761565b612744565b6126dc565b612556565b6126b3565b61262a565b612574565b61250a565b6123ef565b6123d2565b6123b3565b61238a565b612360565b6122a3565b6121e6565b612108565b610a3b565b61209f565b612047565b611fad565b611f38565b6118ab565b611ec3565b611e77565b611db5565b611d68565b611c93565b6119dd565b611953565b611930565b6118c9565b611820565b6117fd565b61179d565b61176c565b6116a2565b611680565b6115bf565b611524565b6114da565b6113bf565b611338565b6112d8565b611271565b61115e565b610e66565b610e3c565b610da8565b610ba4565b610b29565b610a59565b6106a9565b61064c565b610567565b6104b8565b610455565b6001600160a01b0381160361044357565b600080fd5b359061045382610432565b565b3461044357604036600319011261044357602061049d60043561047781610432565b6024356000526000835260406000209060018060a01b0316600052602052604060002090565b54604051908152f35b6001600160e01b031981160361044357565b346104435760203660031901126104435760206004356104d7816104a6565b63ffffffff60e01b16636cdb3d1360e11b8114908115610515575b8115610504575b506040519015158152f35b6301ffc9a760e01b149050386104f9565b6303a24d0760e21b811491506104f2565b919082519283825260005b848110610552575050826000602080949584010152601f8019910116010190565b80602080928401015182828601015201610531565b3461044357602036600319011261044357604051600060025461058981612c17565b808452906001811690811561062857506001146105c9575b6105c5836105b181850382610c93565b604051918291602083526020830190610526565b0390f35b600260009081527f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace939250905b80821061060e575090915081016020016105b16105a1565b9192600181602092548385880101520191019092916105f6565b60ff191660208086019190915291151560051b840190910191506105b190506105a1565b34610443576020366003190112610443577f2e54a66023bd119d7da51cb6619e461b9f2d33f3749d492dcec52d5c6ce5f34b602060043561068b614094565b80601055604051908152a1005b60c090600319011261044357600490565b346104435760c0366003190112610443576106c336610698565b6106cb614094565b6040810180356106da81610432565b6001600160a01b03166000908152600d60205260409020546106fe9060ff16612cde565b61070782613fb0565b9161073461072861072285600052600a602052604060002090565b93612cd4565b6001600160a01b031690565b606082019061075061074583612d2f565b65ffffffffffff1690565b4210610a10576002840165ffffffffffff610771825465ffffffffffff1690565b166109f957805465ffffffffffff19164265ffffffffffff16179055604051630198a77d60e11b81526001600160a01b03919091169390602081600481885afa9081156109d5576000916109da575b506107ee6001600160801b0360018401921682906001600160801b03166001600160801b0319825416179055565b6040516316d3df1560e31b8152602081600481895afa9283156109d5577f8da731be8204f25f24740734bc94894e24bf5606c951e71acc15bff0e1a68a9f966108666001600160801b036109a1968b956000916109a6575b5086546001600160801b0316911660801b6001600160801b031916178555565b6108b0610872886140a8565b926108966001600160801b03851661089183546001600160801b031690565b612d6a565b6001600160801b03166001600160801b0319825416179055565b826000805160206155388339815191526108f560a08a01946108df816108d861072889612cd4565b3390614149565b6040805191825233602083015290918291820190565b0390a261090187612da0565b93610926610722608061091f61091960208d01612da0565b9a612d2f565b9a01612d2f565b9054604080516001600160801b03978816815298871660208a015265ffffffffffff998a16908901529290971660608701526001600160a01b03908116608087810191909152961660a086015291821660c0850152931c60e0830152610100820183905261ac1d909218610120820152908190610140820190565b0390a2005b6109c8915060203d6020116109ce575b6109c08183610c93565b810190612d39565b38610846565b503d6109b6565b612d48565b6109f3915060203d6020116109ce576109c08183610c93565b386107c0565b6309ed6f7160e11b600052600486905260245b6000fd5b610a0c610a1c83612d2f565b63c7b7b42d60e01b6000524260045265ffffffffffff16602452604490565b34610443576000366003190112610443576020601054604051908152f35b3461044357602036600319011261044357600435610a7681610432565b610a7e614094565b6001600160a01b03166000818152600d602052604090205460ff16610aee576001600160a01b0381166000908152600d60205260409020610ac7905b805460ff19166001179055565b7f5d30d9fe66d95241fa9d52d043504e452639553b3156d29d5c2df6625a246db2600080a2005b60405162461bcd60e51b8152602060048201526013602482015272185b1c9958591e481dda1a5d195b1a5cdd1959606a1b6044820152606490fd5b346104435760003660031901126104435760206040516103e88152f35b9181601f84011215610443578235916001600160401b0383116104435760208085019460c0850201011161044357565b602060031982011261044357600435906001600160401b03821161044357610ba091600401610b46565b9091565b3461044357610bb236610b76565b610bba614189565b60005b818110610bcb576001600755005b80610c18610be4610bdf6001948688612dc0565b613fb0565b610bfc61ac1d610bf48333612bf2565b921833612bf2565b90610c08848789612dc0565b9180821015610c1e5750906141ab565b01610bbd565b9050906141ab565b634e487b7160e01b600052604160045260246000fd5b61016081019081106001600160401b03821117610c5857604052565b610c26565b60e081019081106001600160401b03821117610c5857604052565b60c081019081106001600160401b03821117610c5857604052565b90601f801991011681019081106001600160401b03821117610c5857604052565b6040519061045361016083610c93565b6001600160401b038111610c585760051b60200190565b9080601f83011215610443578135610cf281610cc4565b92610d006040519485610c93565b81845260208085019260051b82010192831161044357602001905b828210610d285750505090565b8135815260209182019101610d1b565b6001600160401b038111610c5857601f01601f191660200190565b929192610d5f82610d38565b91610d6d6040519384610c93565b829481845281830111610443578281602093846000960137010152565b9080601f8301121561044357816020610da593359101610d53565b90565b346104435760a036600319011261044357600435610dc581610432565b60243590610dd282610432565b6044356001600160401b03811161044357610df1903690600401610cdb565b6064356001600160401b03811161044357610e10903690600401610cdb565b90608435936001600160401b03851161044357610e34610e3a953690600401610d8a565b93612dd0565b005b3461044357600036600319011261044357610e55614094565b6011805461ff001916610100179055005b346104435760c036600319011261044357610e8036610698565b610e88614094565b60408101908135610e9881610432565b6001600160a01b03166000908152600d6020526040902054610ebc9060ff16612cde565b610ec581613fb0565b91610ee6610728610ee085600052600a602052604060002090565b92612cd4565b90600281019165ffffffffffff610f07845465ffffffffffff9060301c1690565b166111365760808401610f1c61074582612d2f565b421061110b57506040516316d3df1560e31b815292906001600160a01b0316602084600481845afa9384156109d5576000946110ea575b50600460018401546020610f77610f6a8360801c90565b926001600160801b031690565b936040519384809263313ce56760e01b82525afa9687156109d5576108df6110a9966108d861072860a0611090956110408f9a7fafeed4501a6753eefb924ea0eeb9a58b8d2ad05c8610190cd5f2c7160341a2559f8f6110969b61100e9261101a946000805160206155388339815191529f6000926110c9575b50610ffb88612da0565b9261100860208a01612da0565b946142de565b6001600160801b031690565b8c54600160601b600160e01b03191660609190911b600160601b600160e01b0316178c55565b8a546bffffffffffff00000000000019164260301b6bffffffffffff00000000000016178b5561106f81614409565b9687956108966001600160801b03881661089183546001600160801b031690565b01612cd4565b0390a25460601c6001600160801b031690565b604080519283526001600160801b039091166020830152819081016109a1565b6110e391925060203d6020116109ce576109c08183610c93565b9038610ff1565b61110491945060203d6020116109ce576109c08183610c93565b9238610f53565b611117610a0c91612d2f565b63bd7d315f60e01b6000524260045265ffffffffffff16602452604490565b6366ddd3a160e11b600052600485905260246000fd5b6102a090600319011261044357600490565b34610443576102a0366003190112610443576111793661114c565b61118161444b565b906102a081360312610443576105c591611261916112566102806111a3610cb4565b926111ad81610448565b84526111bb60208201610448565b60208501526111cc60408201612e2d565b60408501526111dd60608201610448565b60608501526111ee60808201612e38565b60808501526112003660a08301612e43565b60a08501526112126101608201612e38565b60c08501526112246101808201610448565b60e08501526112366101a08201612e38565b61010085015261124a366101c08301612e43565b61012085015201612e38565b6101408201526145f8565b6040519081529081906020820190565b346104435760c036600319011261044357610e3a61128e36610698565b612f69565b906020808351928381520192019060005b8181106112b15750505090565b82518452602093840193909201916001016112a4565b906020610da5928181520190611293565b34610443576112e636610b76565b906112f082613069565b9160005b81811061131157604051602080825281906105c590820187611293565b806113276113226001938587612dc0565b614409565b611331828761309b565b52016112f4565b3461044357600036600319011261044357602060ff60115460081c166040519015158152f35b9181601f84011215610443578235916001600160401b038311610443576020808501946102a0850201011161044357565b9181601f84011215610443578235916001600160401b038311610443576020808501948460051b01011161044357565b34610443576060366003190112610443576004356001600160401b038111610443576113ef90369060040161135e565b6024356001600160401b0381116104435761140e90369060040161138f565b6044356001600160401b0381116104435761142d90369060040161138f565b9490928285148015906114d0575b6114bf57909336829003601e1901919060005b81811061145757005b6114628183896130af565b90858110156114ba578060051b84013585811215610443578401918235926001600160401b03841161044357602001908336038213610443576001936114b4926114ad858e8d6130c0565b359261325b565b0161144e565b612daa565b633009a29d60e01b60005260046000fd5b508585141561143b565b34610443576000366003190112610443576114f3614094565b60ff19601154166011557ff9b5d9ff43c04557eb813158a432098c5d195947516dd9795ef5a11ecb047f36600080a1005b346104435760e03660031901126104435761153e36610698565b60c4359061154b82610432565b61155481613fb0565b9182600052600a60205260406000209065ffffffffffff600283015460301c16156115aa57906115a461159e611596611261959461ac1d6105c5981890612bf2565b933690612e43565b91612ec7565b906146e7565b83631fd4ba0360e01b60005260045260246000fd5b34610443576040366003190112610443576004356001600160401b0381116104435736602382011215610443578060040135906115fb82610cc4565b916116096040519384610c93565b8083526024602084019160051b8301019136831161044357602401905b82821061166657836024356001600160401b038111610443576105c59161165461165a923690600401610cdb565b906130d0565b604051918291826112c7565b60208091833561167581610432565b815201910190611626565b346104435760c036600319011261044357610e3a61169d36610698565b613143565b34610443576020366003190112610443576004356116bf81610432565b6116c7614094565b60018060a01b031680600052600d602052600160ff60406000205416151503611731576001600160a01b0381166000908152600d60205260409020805460ff191690557fdfb945e5b80afc93bd56261ec23d264f7bdefcb9dee18ba4781ec206fe7a1dc7600080a2005b60405162461bcd60e51b8152602060048201526013602482015272185b1c9958591e48189b1858dadb1a5cdd1959606a1b6044820152606490fd5b3461044357602036600319011261044357600435600052600b602052602060ff604060002054166040519015158152f35b34610443576117ab36610b76565b906117b582613069565b9160005b8181106117d657604051602080825281906105c590820187611293565b806117ec6117e76001938587612dc0565b6140a8565b6117f6828761309b565b52016117b9565b3461044357600036600319011261044357602060ff601154166040519015158152f35b346104435760203660031901126104435760043561183d81610432565b611845614094565b6001600160a01b03168015611895576020817f2c8741c51ef15572035be75af521ed4878a6e3406c7fdea3494b5fbffdc107c6926001600160601b0360a01b6009541617600955604051908152a1005b634e487b7160e01b600052600160045260246000fd5b34610443576000366003190112610443576020600f54604051908152f35b34610443576000366003190112610443576118e2614094565b600680546001600160a01b03199081169091556005805491821690556000906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b3461044357600036600319011261044357602061194b61444b565b604051908152f35b3461044357600036600319011261044357600654336001600160a01b03909116036119c857600680546001600160a01b0319908116909155600580543392811683179091556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a3005b63118cdaa760e01b6000523360045260246000fd5b34610443576119eb36610b76565b4265ffffffffffff16919060005b818110611a0257005b611a0d818385612dc0565b90611a16614094565b60408201918235611a2681610432565b6001600160a01b03166000908152600d6020526040902054611a4a9060ff16612cde565b611a5381613fb0565b90611a74610728611a6e84600052600a602052604060002090565b95612cd4565b90600285019165ffffffffffff611a95845465ffffffffffff9060301c1690565b16611c7d5760808201611aaa61074582612d2f565b421061110b57506040516316d3df1560e31b81526001600160a01b03919091169590926020846004818a5afa9283156109d557600494600094611c5d575b5060018301546020611afd610f6a8360801c90565b996040519788809263313ce56760e01b82525afa9081156109d557611c086108df611c1d968f95611bde8c9760019f611b8e61100e7fafeed4501a6753eefb924ea0eeb9a58b8d2ad05c8610190cd5f2c7160341a2559f8f909a6000805160206155388339815191529c611bb4956110969d600092611c3d575b50611b818a612da0565b9261100860208c01612da0565b8b54600160601b600160e01b03191660609190911b600160601b600160e01b0316178b55565b89546bffffffffffff000000000000191660309190911b6bffffffffffff00000000000016178955565b611be781614409565b9384926108966001600160801b03851661089183546001600160801b031690565b611c1861072860a0339301612cd4565b614149565b604080519283526001600160801b0391909116602083015290a2016119f9565b611c5691925060203d81116109ce576109c08183610c93565b9038611b77565b611c7691945060203d81116109ce576109c08183610c93565b9238611ae8565b6366ddd3a160e11b600052600484905260246000fd5b346104435761012036600319011261044357611cae36610698565b60c4359060e435611cbe81610432565b6101043591611ccc83610432565b60ff60115416611d5757610e3a93611d50604051611ce981610c3c565b6000815260006020820152600060408201526000606082015260006080820152611d116131f7565b60a0820152600060c0820152600060e08201526000610100820152611d346131f7565b6101208201526000610140820152611d4a61444b565b906145f8565b339261494b565b634815836b60e11b60005260046000fd5b3461044357600036600319011261044357611d81614094565b600160ff1960115416176011557f05204c23a38d23799ab593b867a0a8f7bb23ba80aa8308107716de014e257d9b600080a1005b3461044357600036600319011261044357611e48611df27f0000000000000000000000000000000000000000000000000000000000000000615084565b6105c5611e1e7f00000000000000000000000000000000000000000000000000000000000000006150e8565b611e56611e2961304d565b91604051958695600f60f81b875260e0602088015260e0870190610526565b908582036040870152610526565b90466060850152306080850152600060a085015283820360c0850152611293565b34610443576020366003190112610443577fa8d4f499ed89ed61915e14bec2bd7bea8fb6c9701f14ce893bbc2e847d920d326020600435611eb6614094565b80600e55604051908152a1005b346104435760e036600319011261044357611edd36610698565b60c435611ee981610432565b611ef282613fb0565b9182600052600a60205260406000209165ffffffffffff600284015460301c16156115aa5790611f32611f2c6105c5956112619594612bf2565b92612ec7565b906148f6565b34610443576000366003190112610443576005546040516001600160a01b039091168152602090f35b6040600319820112610443576004356001600160401b0381116104435781611f8b91600401610b46565b92909291602435906001600160401b03821161044357610ba09160040161138f565b3461044357611fbb36611f61565b80839493036114bf57611fcd84613069565b9360005b818110611fe657604051806105c588826112c7565b80611ff7610bdf6001938589612dc0565b600052600a60205261203660406000205461203061202961201985898b6130c0565b356001600160801b038416613228565b9160801c90565b9061323b565b612040828961309b565b5201611fd1565b346104435761205536611f61565b9061205e614189565b8183036114bf5760005b838110612076576001600755005b806120996120876001938789612dc0565b6120928387876130c0565b35906141ab565b01612068565b34610443576102e0366003190112610443576120ba3661114c565b6102a4356001600160401b03811161044357366023820112156104435780600401356001600160401b03811161044357366024828401011161044357610e3a9260246102c43593019061325b565b34610443576020366003190112610443576004356001600160401b0381116104435761213890369060040161135e565b60005b81811061214457005b61214f8183856130af565b803561215a81610432565b6001600160a01b038116903382036121c55750509061218360019261217d61444b565b90613e0c565b61219a610aba82600052600b602052604060002090565b7fdae6f8929d076546361068a77fbf488bf65e58a76625628ede047a30311456a9600080a20161213b565b6121ce90610432565b6365d0b58b60e11b6000523360045260245260446000fd5b346104435760403660031901126104435760043561220381610432565b6024359081151590818303610443576001600160a01b03811692831561228e5761224f6122609233600052600160205260406000209060018060a01b0316600052602052604060002090565b9060ff801983541691151516179055565b6040519081527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c3160203392a3005b62ced3e160e81b600052600060045260246000fd5b34610443576020366003190112610443576004356122bf614094565b6103e881116122f9576020817fd5862782a16cfe1b4efd87aa8ff52fe97b1b3300d25bbf2719b5cbd413cd9cd492600855604051908152a1005b60405162461bcd60e51b815260206004820152601960248201527f43616e6e6f7420657863656564206d61782066656520425053000000000000006044820152606490fd5b3461044357602036600319011261044357602060043561ac1d60405191188152f35b34610443576102c036600319011261044357602061194b6123803661114c565b6102a43590613e0c565b34610443576000366003190112610443576009546040516001600160a01b039091168152602090f35b346104435760c036600319011261044357602061194b610bdf36610698565b346104435760003660031901126104435760206040516127108152f35b34610443576123fd36611f61565b9050819291036114bf5761241082613069565b9160005b81811061242957604051806105c586826112c7565b8061243a610bdf6001938587612dc0565b6124448133612bf2565b61248c61247a3361246361ac1d86186000526000602052604060002090565b9060018060a01b0316600052602052604060002090565b5492600052600a602052604060002090565b91808210156124d6575061203061100e6124bd6124c49454936124b861100e866001600160801b031690565b613228565b9260801c90565b6124ce828761309b565b525b01612414565b905061203061100e6124bd6124fa9454936124b861100e866001600160801b031690565b612504828761309b565b526124d0565b34610443576020366003190112610443577f9ee70d55a8fb5949bbafdc2c166db4f6b56a7f6827fcfc91202d433174fddd0d6020600435612549614094565b80600f55604051908152a1005b34610443576020366003190112610443576020600435604051908152f35b346104435760003660031901126104435761258d614094565b6011805461ff0019169055005b6104539092919260c08060e08301956001600160801b0381511684526001600160801b0360208201511660208501526001600160801b0360408201511660408501526001600160801b03606082015116606085015265ffffffffffff608082015116608085015261261a60a082015160a086019065ffffffffffff169052565b01516001600160801b0316910152565b3461044357602036600319011261044357600435600060c060405161264e81610c5d565b8281528260208201528260408201528260608201528260808201528260a08201520152600052600a6020526105c56126896040600020612ec7565b6040519182918261259a565b34610443576000366003190112610443576020600e54604051908152f35b34610443576000366003190112610443576006546040516001600160a01b039091168152602090f35b3461044357604036600319011261044357602060ff61273860043561270081610432565b6024359061270d82610432565b60018060a01b03166000526001845260406000209060018060a01b0316600052602052604060002090565b54166040519015158152f35b3461044357600036600319011261044357602060405161ac1d8152f35b34610443576040366003190112610443576004356001600160401b03811161044357612791903690600401610b46565b6024356001600160401b038111610443576127b0903690600401610b46565b92909160005b8181106127e35750505060005b8281106127cc57005b806127dd61128e6001938686612dc0565b016127c3565b806127f461169d6001938587612dc0565b016127b6565b346104435760a03660031901126104435760043561281781610432565b60243561282381610432565b60443590606435926084356001600160401b0381116104435761284a903690600401610d8a565b926001600160a01b03821633811415806128ed575b6128d5576001600160a01b038416156128bf57156128aa57610e3a946128a260405192600184526020840152604083019160018352606084015260808301604052565b929091614d56565b626a0d4560e21b600052600060045260246000fd5b632bfa23e760e11b600052600060045260246000fd5b63711bec9160e11b6000523360045260245260446000fd5b50600081815260016020908152604080832033845290915290205460ff161561285f565b346104435760203660031901126104435760043561292e81610432565b612936614094565b600680546001600160a01b0319166001600160a01b039283169081179091556005549091167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e22700600080a3005b346104435761299036610b76565b4265ffffffffffff16919060005b8181106129a757005b6129b2818385612dc0565b906129bb614094565b604082019182356129cb81610432565b6001600160a01b03166000908152600d60205260409020546129ef9060ff16612cde565b6129f881613fb0565b90612a13610728611a6e84600052600a602052604060002090565b906060810191612a2561074584612d2f565b4210612bc8576002860165ffffffffffff612a46825465ffffffffffff1690565b16612bb257805465ffffffffffff191665ffffffffffff8b16179055604051630198a77d60e11b81526001600160a01b03919091169290602081600481875afa9081156109d557600091612b94575b50612ac36001600160801b0360018901921682906001600160801b03166001600160801b0319825416179055565b6040516316d3df1560e31b815290602082600481885afa9182156109d5576001987f8da731be8204f25f24740734bc94894e24bf5606c951e71acc15bff0e1a68a9f96612b3e6001600160801b03612b73968b95600091612b7c575086546001600160801b0316911660801b6001600160801b031916178555565b612b4a610872886140a8565b826000805160206155388339815191526108f560a08a01946108df8133611c186107288a612cd4565b0390a20161299e565b6109c8915060203d81116109ce576109c08183610c93565b612bac915060203d81116109ce576109c08183610c93565b38612a95565b6309ed6f7160e11b600052600485905260246000fd5b610a0c610a1c84612d2f565b34610443576000366003190112610443576020600854604051908152f35b6000918252602082815260408084206001600160a01b03909316845291905290205490565b90600182811c92168015612c47575b6020831014612c3157565b634e487b7160e01b600052602260045260246000fd5b91607f1691612c26565b60009291815491612c6183612c17565b8083529260018116908115612cb75750600114612c7d57505050565b60009081526020812093945091925b838310612c9d575060209250010190565b600181602092949394548385870101520191019190612c8c565b915050602093945060ff929192191683830152151560051b010190565b35610da581610432565b15612ce557565b60405162461bcd60e51b8152602060048201526012602482015271092dcecc2d8d2c8a6d2d8d2c6c292dcc8caf60731b6044820152606490fd5b65ffffffffffff81160361044357565b35610da581612d1f565b90816020910312610443575190565b6040513d6000823e3d90fd5b634e487b7160e01b600052601160045260246000fd5b906001600160801b03809116911603906001600160801b038211612d8a57565b612d54565b6001600160801b0381160361044357565b35610da581612d8f565b634e487b7160e01b600052603260045260246000fd5b91908110156114ba5760c0020190565b939291906001600160a01b0385163381141580612e09575b6128d5576001600160a01b038216156128bf57156128aa5761045394614d56565b50600081815260016020908152604080832033845290915290205460ff1615612de8565b359061045382612d1f565b359061045382612d8f565b91908260c091031261044357604051612e5b81610c78565b60a0612ec28183958035612e6e81612d8f565b85526020810135612e7e81612d8f565b60208601526040810135612e9181610432565b60408601526060810135612ea481612d1f565b60608601526080810135612eb781612d1f565b608086015201610448565b910152565b90610453604051612ed781610c5d565b60c0612f5b600283966001600160801b038154818116875260801c166020860152612f2a612f1a60018301546001600160801b0380821616604089015260801c90565b6001600160801b03166060870152565b015465ffffffffffff8116608085015265ffffffffffff603082901c1660a085015260601c6001600160801b031690565b6001600160801b0316910152565b612f7281613fb0565b80600052600a60205260406000209065ffffffffffff80600284015460301c161615613039577ff1e780e78d89d283caba1fefbe6d85a112fb930e5cb9544301096a011c7bafb461ac1d82189361301260a0612fef612fdf336124638a6000526000602052604060002090565b5480976115a461159e3688612e43565b92612ffb87893361475c565b0161300d8333611c1861072885612cd4565b612cd4565b604080519586526001600160a01b039091166020860152840152339280606081015b0390a4565b631fd4ba0360e01b60005260045260246000fd5b6040519061305c602083610c93565b6000808352366020840137565b9061307382610cc4565b6130806040519182610c93565b8281528092613091601f1991610cc4565b0190602036910137565b80518210156114ba5760209160051b010190565b91908110156114ba576102a0020190565b91908110156114ba5760051b0190565b9190918051835180820361312c5750506130ea8151613069565b9060005b8151811015613125578061311460019260051b6020808287010151918901015190612bf2565b61311e828661309b565b52016130ee565b5090925050565b635b05999160e01b60005260045260245260446000fd5b61314c81613fb0565b9081600052600a602052604060002065ffffffffffff600282015460301c16156131e2577ff1e780e78d89d283caba1fefbe6d85a112fb930e5cb9544301096a011c7bafb46131d09261301260a06131d687958660005260006020526131c760406000203360018060a01b0316600052602052604060002090565b54978891612ec7565b856148f6565b92612ffb87873361475c565b82631fd4ba0360e01b60005260045260246000fd5b6040519061320482610c78565b600060a0838281528260208201528260408201528260608201528260808201520152565b81810292918115918404141715612d8a57565b8115613245570490565b634e487b7160e01b600052601260045260246000fd5b91613264614189565b6011549160ff8316611d575761328e61328461327e61444b565b86613e0c565b9360081c60ff1690565b1580613cb3575b613c9d576132b76132b084600052600b602052604060002090565b5460ff1690565b613c87576132cf6132c9368484610d53565b84614c55565b6132db61072886612cd4565b6001600160a01b0390911603613c67575050602082016001600160a01b0361330282612cd4565b16151580613c4c575b613c2057506040820161331d81612d2f565b65ffffffffffff42911610613bf5575060a082019265ffffffffffff61336a600261335a61334a88613fb0565b600052600a602052604060002090565b015460301c65ffffffffffff1690565b16613bd6576101c0830192613389610745600261335a61334a88613fb0565b613bd657608081016001600160801b036133a282612da0565b16613aec575b6101a08201916133ba61100e84612da0565b6139cf575b6101608101926133d161100e85612da0565b61375a575b506102808101916133e961100e84612da0565b6134ce575b5061345c8461347a61347461346e61346e6134686134626134c1988d6134497f40e693fe7b2f0b2982286c4522e2b45296dfb9b66206b5bc1551a29dbcc538619e61344383600052600c602052604060002090565b54613d2e565b998a91600052600c602052604060002090565b55612cd4565b9d613fb0565b9b613fb0565b96612da0565b92613d05565b91604051958695339b60018060a01b03169a8792936001600160801b0360a09581939998979460c087019a8752602087015216604085015216606083015260808201520152565b0390a46104536001600755565b60046020613511610728610728610200870161300d61350c6132b06134f284612cd4565b6001600160a01b03166000908152600d6020526040902090565b613ced565b60405163313ce56760e01b815292839182905afa9081156109d55760009161373b575b5061353e88612da0565b9061354c6101e08501612da0565b8761355687612da0565b6001600160801b03169061356991613228565b670de0b6b3a764000090049061357e93614cbd565b908660085461358d9084613228565b61271090046102608501906135a182612cd4565b6001600160a01b031660095482906001600160a01b0316336135c293614c6b565b6135cb8b613fb0565b6135d48c613fb0565b926135de90612cd4565b604080519283526001600160a01b0391909116602083015281019190915233907fd251a84f70b303473d1a800f3bee17030d3936ce3f7c39e96744648d7490641190606090a48561362e85612da0565b6001600160801b03169061364191613228565b670de0b6b3a764000090043361365685612cd4565b33613662938b8d61494b565b61366b88613fb0565b61367484612cd4565b9161367e8a613fb0565b61ac1d1892898961368e89612da0565b6001600160801b0316906136a191613228565b670de0b6b3a76400009004958a6136ba60608a01612cd4565b946136c490612da0565b6001600160801b0316906136d791613228565b670de0b6b3a764000090046136eb91613d21565b604080519283526020830196909652948101959095526001600160a01b039182166060860152608085019390935291909116913391906000805160206155588339815191529060a090a4386133ee565b613754915060203d6020116109ce576109c08183610c93565b38613534565b6004602061377d61072861072860e0870161300d61350c6132b06134f284612cd4565b60405163313ce56760e01b815292839182905afa9081156109d5576000916139b0575b506137aa89612da0565b906137b760c08501612da0565b876137c188612da0565b6001600160801b0316906137d491613228565b670de0b6b3a76400009004906137e993614cbd565b866008546137f79083613228565b612710900461014085019061380b82612cd4565b6001600160a01b031660095482906001600160a01b03163361382c93614c6b565b6138358c613fb0565b61ac1d186138428d613fb0565b9261384c90612cd4565b604080519283526001600160a01b0391909116602083015281019190915233907fd251a84f70b303473d1a800f3bee17030d3936ce3f7c39e96744648d7490641190606090a4888661389d87612da0565b6001600160801b0316906138b091613228565b670de0b6b3a76400009004886138c586612cd4565b6138ce87612cd4565b9233926138da9561494b565b6138e389613fb0565b6138ec84612cd4565b926138f68b613fb0565b61ac1d189289896139068a612da0565b6001600160801b03169061391991613228565b670de0b6b3a76400009004918a6139336101808a01612cd4565b9461393d90612da0565b6001600160801b03169061395091613228565b670de0b6b3a7640000900461396491613d21565b604080519283526020830196909652948101919091526001600160a01b0391821660608201526080810193909352339316916000805160206155588339815191529060a090a4386133d6565b6139c9915060203d6020116109ce576109c08183610c93565b386137a0565b61018081016139dd81612cd4565b6001600160a01b03166139ef83612cd4565b866139f987612da0565b6001600160801b031690613a0c91613228565b670de0b6b3a764000090049033613a2293614c6b565b613a2b88613fb0565b613a3483612cd4565b90613a3e8a613fb0565b9187613a4d6101608701612da0565b6001600160801b031690613a6091613228565b670de0b6b3a7640000900493613a7590612cd4565b908989613a818a612da0565b6001600160801b031690613a9491613228565b604080519283526020830196909652948101959095526001600160a01b039182166060860152670de0b6b3a7640000909304608085015291909116913391906000805160206155588339815191529060a090a46133bf565b848460608401613b34613b0161072883612cd4565b613b0a87612cd4565b90613b2c613b1e8a6124b861100e8b612da0565b670de0b6b3a7640000900490565b913391614c6b565b600080516020615558833981519152613b4c84613fb0565b9186613bce613b7d610722613b1e8c6124b861100e610280613b76613b708a612cd4565b9e613fb0565b9801612da0565b613b90613b1e8c6124b861100e8d612da0565b604080519889526020890194909452928701939093526001600160a01b039283166060870152608086019190915233959091169390819060a0820190565b0390a46133a8565b610a0c613be285613fb0565b6366ddd3a160e11b600052600452602490565b613c01610a0c91612d2f565b632676a8cd60e21b60005265ffffffffffff1660045242602452604490565b613c2c610a0c91612cd4565b6365d0b58b60e11b600052336004526001600160a01b0316602452604490565b50613c5681612cd4565b6001600160a01b031633141561330b565b613c83604051928392634f11230760e01b845260048401613cc5565b0390fd5b63310cc63360e21b600052600483905260246000fd5b6318f8b05760e21b600052600483905260246000fd5b50670de0b6b3a7640000851415613295565b90918060409360208452816020850152848401376000828201840152601f01601f1916010190565b15613cf457565b637209d83160e11b60005260046000fd5b670de0b6b3a76400000390670de0b6b3a76400008211612d8a57565b91908203918211612d8a57565b91908201809211612d8a57565b6104539092919260c0613dfe60a060e08401967f25036ae61bfc8d8512539bb2b64fb5ba7dcad72dca292e53cbc1b911b11a73e085526001600160801b038135613d8481612d8f565b1660208601526001600160801b036020820135613da081612d8f565b1660408601526040810135613db481610432565b600180841b0316606086015265ffffffffffff6060820135613dd581612d1f565b166080860152613df8613dea60808301612e2d565b65ffffffffffff1686840152565b01610448565b6001600160a01b0316910152565b90610da5916040516020810190613e3881613e2a60a0860185613d3b565b03601f198101835282610c93565b51902090613f8f6040516020810190613e5981613e2a6101c0870185613d3b565b51902092613e2a613e6984612cd4565b94613e7660208601612cd4565b92613e8360408701612d2f565b95613e9060608201612cd4565b91613e9d60808301612da0565b90613eab6101608401612da0565b613eb86101808501612cd4565b92613ed3610280613ecc6101a08801612da0565b9601612da0565b956040519b8c9a60208c019e8f7fe150cacb97f549f136b51aebe10986dc8bb73d35181d725b8a20dac1ac0c26b781526001600160a01b039182166020820152918116604083015265ffffffffffff9092166060820152911660808201526001600160801b0391821660a0820152911660c0820152610180810196959490939092909160e08501526001600160a01b03166101008401526001600160801b03166101208301526001600160801b03166101408201526101600152565b519020906042916040519161190160f01b8352600283015260228201522090565b803590613fbc82612d8f565b602081013590613fcb82612d8f565b604081013590613fda82610432565b6060810135613fe881612d1f565b60a0608083013592613ff984612d1f565b01359261400584610432565b6040519460208601966001600160801b03199060801b1687526001600160801b03199060801b1660308601526001600160601b03199060601b16604085015265ffffffffffff60d01b9060d01b16605484015265ffffffffffff60d01b9060d01b16605a8301526001600160601b03199060601b1660608201526054815261408e607482610c93565b51902090565b6005546001600160a01b031633036119c857565b613b1e610da5916140b881613fb0565b600052600a60205265ffffffffffff60606001600160801b0380604060002054161692016140f681356140ea81612d1f565b600e5493849116613d2e565b421115614140576141279161411961411361074561411e94612d2f565b42613d21565b613d21565b60105490613228565b600f5490818111156141395750613228565b9050613228565b50506000614127565b60405163a9059cbb60e01b60208201526001600160a01b03909216602483015260448083019390935291815261045391614184606483610c93565b614cfb565b60026007541461419a576002600755565b633ee5aeb560e01b60005260046000fd5b6141b481613fb0565b80600052600a6020527f12f5b4ba74ddf6fb0dac562f2e5020a8bb1172bdf51f14af3e551439d249354860406000209260a084549161425261423261422161421161420a8b6001600160801b03808a1616613228565b9660801c90565b956001600160801b038716612030565b946001600160801b038a1690612d6a565b87546001600160801b031660809190911b6001600160801b031916178755565b61428f61ac1d86189661426689883361475c565b61427189893361475c565b6108966001600160801b03861661089183546001600160801b031690565b016142a18233611c1861072885612cd4565b6001600160a01b03906142b390612cd4565b1694613034604051928392339787859094939260609260808301968352602083015260408201520152565b9194906001600160801b0380911695169283156143b55785831061433f576143316001600160801b039461432c8693614326614320610da59b61433899613d21565b91614caf565b90613228565b61323b565b911661548f565b91166154a1565b60405162461bcd60e51b815260206004820152604260248201527f496e6465782062616c616e6365206d757374206265206772656174657220746860448201527f616e206f7220657175616c20746f2074686520696e697469616c2062616c616e606482015261636560f01b608482015260a490fd5b60405162461bcd60e51b815260206004820152602660248201527f496e64657820736861726573206d7573742062652067726561746572207468616044820152656e207a65726f60d01b6064820152608490fd5b613b1e610da59161441981613fb0565b600052600a60205265ffffffffffff60806001600160801b0380604060002054161692016140f681356140ea81612d1f565b307f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03161480614538575b156144a6577f000000000000000000000000000000000000000000000000000000000000000090565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260a0815261408e60c082610c93565b507f0000000000000000000000000000000000000000000000000000000000000000461461447d565b91909160c060e08201937f25036ae61bfc8d8512539bb2b64fb5ba7dcad72dca292e53cbc1b911b11a73e083526001600160801b0381511660208401526001600160801b03602082015116604084015260018060a01b03604082015116606084015265ffffffffffff606082015116608084015265ffffffffffff60808201511660a084015260a0600180821b0391015116910152565b90610da59160a081015160405161461781613e2a602082019485614561565b51902090613f8f61012082015160405161463981613e2a602082019485614561565b5190208251909390613e2a906001600160a01b031660208501519095906001600160a01b031692614673604087015165ffffffffffff1690565b60608701519096906001600160a01b03169161469960808301516001600160801b031690565b906146ae60c08401516001600160801b031690565b60e08401516001600160a01b031692613ed36101406146d86101008801516001600160801b031690565b9601516001600160801b031690565b602061473d610da5946124b86001600160801b03948561473686830192828061472a8c8280614720818b51168260c08601511690612d6a565b1691511690613228565b95511691511690612d6a565b169061323b565b920151169061323b565b60405190614756602083610c93565b60008252565b926001600160a01b0384169290919083156128aa5761479860405192600184526020840152604083019160018352606084015260808301604052565b919060209160006040516147ac8582610c93565b5281518451908181036148df57505060005b8251811015614854578060051b8480828601015191870101516147ef89612463846000526000602052604060002090565b5481811061481d578961246360019594936148169303936000526000602052604060002090565b55016147be565b6040516303dee4c560e01b81526001600160a01b038b16600482015260248101919091526044810182905260648101839052608490fd5b509450909160009392600183511485146148ab579182015191015160408051928352602083019190915233917fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f629181908101613034565b506130347f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb916040519182913395836151fd565b635b05999160e01b60005260045260245260446000fd5b602061473d610da5946124b86001600160801b0394856147368160c08a015116876149368461492b8735809561089182612d8f565b16858d511690613228565b94013561494281612d8f565b61089182612d8f565b949290946040810194853561495f81610432565b6001600160a01b03166000908152600d60205260409020546149839060ff16612cde565b8493816149996001600160801b03831115614be9565b6149a284613fb0565b9765ffffffffffff6149c3600261335a8c600052600a602052604060002090565b16614bd357906149da610728600496959493612cd4565b966149ef8a600052600a602052604060002090565b6149f886612da0565b996020614a06818901612da0565b60405163313ce56760e01b8152909b90998a9182906001600160a01b03165afa998a156109d557614a6a8d9b8760a0937f3226776085fb473b91e74f4a2b3e96cd425fcc3e1bc0ee18410353c435a7e9d39f614b9d9d600094614bb2575b50614cbd565b97614aad614a916001600160801b038b16614a8c87546001600160801b031690565b614c35565b85546001600160801b0319166001600160801b03909116178555565b0195614ac788614abf6107288a612cd4565b8c3091614c6b565b6001600160a01b031615614baa575b6001600160a01b031615614ba2575b614b2190614b016001600160801b038616614a8c835460801c90565b81546001600160801b031660809190911b6001600160801b031916179055565b614b5061ac1d891894614b3d614b35614747565b868c87614f3f565b61300d614b48614747565b868886614f3f565b604080519c8d5260208d0199909952978b01939093526001600160a01b0392831660608b0152821660808a015260a089015293841660c088015260e0870152911693908190610100820190565b0390a3565b339150614ae5565b339350614ad6565b614bcc91945060203d6020116109ce576109c08183610c93565b9238614a64565b6366ddd3a160e11b600052600489905260246000fd5b15614bf057565b60405162461bcd60e51b815260206004820152601960248201527f536861726573206578636565642075696e74313238206d6178000000000000006044820152606490fd5b906001600160801b03809116911601906001600160801b038211612d8a57565b610da591614c629161511f565b9092919261517b565b6040516323b872dd60e01b60208201526001600160a01b03928316602482015292909116604483015260648083019390935291815261045391614184608483610c93565b604d8111612d8a57600a0a90565b916001600160801b03614cd6614cdc9461432094612d6a565b16613228565b8015614ced57808204910615150190565b6365244e4e6000526004601cfd5b906000602091828151910182855af115612d48576000513d614d4d57506001600160a01b0381163b155b614d2c5750565b635274afe760e01b60009081526001600160a01b0391909116600452602490fd5b60011415614d25565b94939290919384518251908181036148df5750506001600160a01b0386811695861515959185168015159391929060005b8451811015614e71578060051b90898988602080868b010151958c01015192614dea575b93600194614dbd575b50505001614d87565b614de091612463614dd8926000526000602052604060002090565b918254613d2e565b9055388981614db4565b50509091614e068d612463836000526000602052604060002090565b54828110614e3a578291898f614e31600197968f950391612463856000526000602052604060002090565b55909450614dab565b6040516303dee4c560e01b81526001600160a01b038f16600482015260248101919091526044810183905260648101829052608490fd5b509198959392979096506001885114600014614f055760208881015186820151604080519283529282015233917fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f6291a45b614ece575b5050505050565b8451600103614ef457602080614eea96015192015192336153ef565b3880808080614ec7565b614f00949192336152ba565b614eea565b6040517f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb339180614f37898d836151fd565b0390a4614ec2565b6001600160a01b038116939290919084156128bf57614f7b60405192600184526020840152604083019160018352606084015260808301604052565b9281518451908181036148df57505060005b8251811015614fcd578060019160051b614fc5614dd887612463602080868b010151958c010151946000526000602052604060002090565b905501614f8d565b5092919360018251146000146150485760208281015184820151604080519283529282015260009133917fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f629190a45b805160010361503c579060208061045395930151910151916000336153ef565b610453936000336152ba565b60006040517f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb33918061507c8888836151fd565b0390a461501c565b60ff81146150ce5760ff811690601f82116150bd5760408051926150a88285610c93565b6020808552840191601f190136833783525290565b632cd44ac360e21b60005260046000fd5b50604051610da5816150e1816003612c51565b0382610c93565b60ff811461510c5760ff811690601f82116150bd5760408051926150a88285610c93565b50604051610da5816150e1816004612c51565b81519190604183036151505761514992506020820151906060604084015193015160001a906154ae565b9192909190565b505060009160029190565b6004111561516557565b634e487b7160e01b600052602160045260246000fd5b6151848161515b565b8061518d575050565b6151968161515b565b600181036151af5763f645eedf60e01b60005260046000fd5b6151b88161515b565b600281036151d5575063fce698f760e01b60005260045260246000fd5b806151e160039261515b565b146151e95750565b6335e2f38360e21b60005260045260246000fd5b9091615214610da593604084526040840190611293565b916020818403910152611293565b908160209103126104435751610da5816104a6565b6001600160a01b0391821681529116602082015260a060408201819052610da5949193919261527c929161526e9190860190611293565b908482036060860152611293565b916080818403910152610526565b3d156152b5573d9061529b82610d38565b916152a96040519384610c93565b82523d6000602084013e565b606090565b9091949293853b6152ce575b505050505050565b6020936152f091604051968795869563bc197c8160e01b875260048701615237565b038160006001600160a01b0387165af160009181615385575b50615345575061531761528a565b805191908261533e57632bfa23e760e11b6000526001600160a01b03821660045260246000fd5b9050602001fd5b6001600160e01b0319166343e6837f60e01b0161536857503880808080806152c6565b632bfa23e760e11b6000526001600160a01b031660045260246000fd5b6153a891925060203d6020116153af575b6153a08183610c93565b810190615222565b9038615309565b503d615396565b6001600160a01b039182168152911660208201526040810191909152606081019190915260a060808201819052610da592910190610526565b9091949293853b61540257505050505050565b60209361542491604051968795869563f23a6e6160e01b8752600487016153b6565b038160006001600160a01b0387165af16000918161546e575b5061544b575061531761528a565b6001600160e01b031916630dc5919f60e01b0161536857503880808080806152c6565b61548891925060203d6020116153af576153a08183610c93565b903861543d565b908082101561549c575090565b905090565b908082111561549c575090565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841161552b579160209360809260ff60009560405194855216868401526040830152606082015282805260015afa156109d5576000516001600160a01b0381161561551f5790600090600090565b50600090600190600090565b5050506000916003919056fe39cc814c3df1705a9d1bd4ec3a061f6fb23cb831bb8bc16c733ea10f0228624b25dfd61dc56aaa80d21af2bec91e32accf54e832ae0150840f23119063ce2dfea264697066735822122082582ebda6478cd5ed894c9ba3a5d83a076a37f96ac5fcd2aff2d0cb746d75b064736f6c634300081b003300000000000000000000000000000000000000000000000000000000000000000000000000000000000000009cf99d917fb1a5538aa4316c03b5c57293c97c8f00000000000000000000000062e30d1969faf92dc8a3c22a1552eb83763eb372000000000000000000000000000000000000000000000000000000000000012c00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x6080604052600436101561001257600080fd5b60003560e01c8062fdd58e1461042d57806301ffc9a7146104285780630e89341c1461042357806313208d1b1461041e57806319b87556146104195780631d0fa9cf1461036a57806324b3e7ec146104145780632556bc151461040f57806329fa8b871461040a5780632eb2c2d6146104055780632fece5ae14610400578063312f14ba146103fb57806332afed8f146103f65780633305d6b1146103f157806334d2efe5146103ec57806337d59827146103e75780633ba1a0df146103e25780633f4ba83a146103dd5780634cd21543146103d85780634e1273f4146103d357806351594173146103ce5780635396fae5146103c95780635889bf5e146103c45780635b72928c146103bf5780635c975abb146103ba5780636605bfda146103b55780636c0dc97914610383578063715018a6146103b057806378e890ba146103ab57806379ba5097146103a65780637d1a7558146103a15780637e28c0521461039c5780638456cb591461039757806384b0196e14610392578063880185401461038d5780638ac86f1a146103885780638c8c29ce146103835780638da5cb5b1461037e5780638f409d2614610379578063934ed73214610374578063992cc7cb1461036f5780639c9b381c1461036a578063a0fadc3514610365578063a22cb46514610360578063a2b597ee1461035b578063bda9f38614610310578063c4cde46b14610356578063c5f956af14610351578063c837a9411461034c578063cae6047f14610347578063ccaaa52014610342578063d6dc6b041461033d578063d7e5ae9f14610329578063de30f4a714610338578063e0b01bac14610333578063e1c6709114610306578063e30c39781461032e578063e5c168a814610329578063e985e9c514610324578063ec9f8ae81461031f578063f0cd67511461031a578063f242432a14610315578063f249958514610310578063f2fde38b1461030b578063f50ec60214610306578063f5d213f2146103015763fe2de08c146102fc57600080fd5b612bd4565b612982565b612695565b612911565b61233e565b6127fa565b612761565b612744565b6126dc565b612556565b6126b3565b61262a565b612574565b61250a565b6123ef565b6123d2565b6123b3565b61238a565b612360565b6122a3565b6121e6565b612108565b610a3b565b61209f565b612047565b611fad565b611f38565b6118ab565b611ec3565b611e77565b611db5565b611d68565b611c93565b6119dd565b611953565b611930565b6118c9565b611820565b6117fd565b61179d565b61176c565b6116a2565b611680565b6115bf565b611524565b6114da565b6113bf565b611338565b6112d8565b611271565b61115e565b610e66565b610e3c565b610da8565b610ba4565b610b29565b610a59565b6106a9565b61064c565b610567565b6104b8565b610455565b6001600160a01b0381160361044357565b600080fd5b359061045382610432565b565b3461044357604036600319011261044357602061049d60043561047781610432565b6024356000526000835260406000209060018060a01b0316600052602052604060002090565b54604051908152f35b6001600160e01b031981160361044357565b346104435760203660031901126104435760206004356104d7816104a6565b63ffffffff60e01b16636cdb3d1360e11b8114908115610515575b8115610504575b506040519015158152f35b6301ffc9a760e01b149050386104f9565b6303a24d0760e21b811491506104f2565b919082519283825260005b848110610552575050826000602080949584010152601f8019910116010190565b80602080928401015182828601015201610531565b3461044357602036600319011261044357604051600060025461058981612c17565b808452906001811690811561062857506001146105c9575b6105c5836105b181850382610c93565b604051918291602083526020830190610526565b0390f35b600260009081527f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace939250905b80821061060e575090915081016020016105b16105a1565b9192600181602092548385880101520191019092916105f6565b60ff191660208086019190915291151560051b840190910191506105b190506105a1565b34610443576020366003190112610443577f2e54a66023bd119d7da51cb6619e461b9f2d33f3749d492dcec52d5c6ce5f34b602060043561068b614094565b80601055604051908152a1005b60c090600319011261044357600490565b346104435760c0366003190112610443576106c336610698565b6106cb614094565b6040810180356106da81610432565b6001600160a01b03166000908152600d60205260409020546106fe9060ff16612cde565b61070782613fb0565b9161073461072861072285600052600a602052604060002090565b93612cd4565b6001600160a01b031690565b606082019061075061074583612d2f565b65ffffffffffff1690565b4210610a10576002840165ffffffffffff610771825465ffffffffffff1690565b166109f957805465ffffffffffff19164265ffffffffffff16179055604051630198a77d60e11b81526001600160a01b03919091169390602081600481885afa9081156109d5576000916109da575b506107ee6001600160801b0360018401921682906001600160801b03166001600160801b0319825416179055565b6040516316d3df1560e31b8152602081600481895afa9283156109d5577f8da731be8204f25f24740734bc94894e24bf5606c951e71acc15bff0e1a68a9f966108666001600160801b036109a1968b956000916109a6575b5086546001600160801b0316911660801b6001600160801b031916178555565b6108b0610872886140a8565b926108966001600160801b03851661089183546001600160801b031690565b612d6a565b6001600160801b03166001600160801b0319825416179055565b826000805160206155388339815191526108f560a08a01946108df816108d861072889612cd4565b3390614149565b6040805191825233602083015290918291820190565b0390a261090187612da0565b93610926610722608061091f61091960208d01612da0565b9a612d2f565b9a01612d2f565b9054604080516001600160801b03978816815298871660208a015265ffffffffffff998a16908901529290971660608701526001600160a01b03908116608087810191909152961660a086015291821660c0850152931c60e0830152610100820183905261ac1d909218610120820152908190610140820190565b0390a2005b6109c8915060203d6020116109ce575b6109c08183610c93565b810190612d39565b38610846565b503d6109b6565b612d48565b6109f3915060203d6020116109ce576109c08183610c93565b386107c0565b6309ed6f7160e11b600052600486905260245b6000fd5b610a0c610a1c83612d2f565b63c7b7b42d60e01b6000524260045265ffffffffffff16602452604490565b34610443576000366003190112610443576020601054604051908152f35b3461044357602036600319011261044357600435610a7681610432565b610a7e614094565b6001600160a01b03166000818152600d602052604090205460ff16610aee576001600160a01b0381166000908152600d60205260409020610ac7905b805460ff19166001179055565b7f5d30d9fe66d95241fa9d52d043504e452639553b3156d29d5c2df6625a246db2600080a2005b60405162461bcd60e51b8152602060048201526013602482015272185b1c9958591e481dda1a5d195b1a5cdd1959606a1b6044820152606490fd5b346104435760003660031901126104435760206040516103e88152f35b9181601f84011215610443578235916001600160401b0383116104435760208085019460c0850201011161044357565b602060031982011261044357600435906001600160401b03821161044357610ba091600401610b46565b9091565b3461044357610bb236610b76565b610bba614189565b60005b818110610bcb576001600755005b80610c18610be4610bdf6001948688612dc0565b613fb0565b610bfc61ac1d610bf48333612bf2565b921833612bf2565b90610c08848789612dc0565b9180821015610c1e5750906141ab565b01610bbd565b9050906141ab565b634e487b7160e01b600052604160045260246000fd5b61016081019081106001600160401b03821117610c5857604052565b610c26565b60e081019081106001600160401b03821117610c5857604052565b60c081019081106001600160401b03821117610c5857604052565b90601f801991011681019081106001600160401b03821117610c5857604052565b6040519061045361016083610c93565b6001600160401b038111610c585760051b60200190565b9080601f83011215610443578135610cf281610cc4565b92610d006040519485610c93565b81845260208085019260051b82010192831161044357602001905b828210610d285750505090565b8135815260209182019101610d1b565b6001600160401b038111610c5857601f01601f191660200190565b929192610d5f82610d38565b91610d6d6040519384610c93565b829481845281830111610443578281602093846000960137010152565b9080601f8301121561044357816020610da593359101610d53565b90565b346104435760a036600319011261044357600435610dc581610432565b60243590610dd282610432565b6044356001600160401b03811161044357610df1903690600401610cdb565b6064356001600160401b03811161044357610e10903690600401610cdb565b90608435936001600160401b03851161044357610e34610e3a953690600401610d8a565b93612dd0565b005b3461044357600036600319011261044357610e55614094565b6011805461ff001916610100179055005b346104435760c036600319011261044357610e8036610698565b610e88614094565b60408101908135610e9881610432565b6001600160a01b03166000908152600d6020526040902054610ebc9060ff16612cde565b610ec581613fb0565b91610ee6610728610ee085600052600a602052604060002090565b92612cd4565b90600281019165ffffffffffff610f07845465ffffffffffff9060301c1690565b166111365760808401610f1c61074582612d2f565b421061110b57506040516316d3df1560e31b815292906001600160a01b0316602084600481845afa9384156109d5576000946110ea575b50600460018401546020610f77610f6a8360801c90565b926001600160801b031690565b936040519384809263313ce56760e01b82525afa9687156109d5576108df6110a9966108d861072860a0611090956110408f9a7fafeed4501a6753eefb924ea0eeb9a58b8d2ad05c8610190cd5f2c7160341a2559f8f6110969b61100e9261101a946000805160206155388339815191529f6000926110c9575b50610ffb88612da0565b9261100860208a01612da0565b946142de565b6001600160801b031690565b8c54600160601b600160e01b03191660609190911b600160601b600160e01b0316178c55565b8a546bffffffffffff00000000000019164260301b6bffffffffffff00000000000016178b5561106f81614409565b9687956108966001600160801b03881661089183546001600160801b031690565b01612cd4565b0390a25460601c6001600160801b031690565b604080519283526001600160801b039091166020830152819081016109a1565b6110e391925060203d6020116109ce576109c08183610c93565b9038610ff1565b61110491945060203d6020116109ce576109c08183610c93565b9238610f53565b611117610a0c91612d2f565b63bd7d315f60e01b6000524260045265ffffffffffff16602452604490565b6366ddd3a160e11b600052600485905260246000fd5b6102a090600319011261044357600490565b34610443576102a0366003190112610443576111793661114c565b61118161444b565b906102a081360312610443576105c591611261916112566102806111a3610cb4565b926111ad81610448565b84526111bb60208201610448565b60208501526111cc60408201612e2d565b60408501526111dd60608201610448565b60608501526111ee60808201612e38565b60808501526112003660a08301612e43565b60a08501526112126101608201612e38565b60c08501526112246101808201610448565b60e08501526112366101a08201612e38565b61010085015261124a366101c08301612e43565b61012085015201612e38565b6101408201526145f8565b6040519081529081906020820190565b346104435760c036600319011261044357610e3a61128e36610698565b612f69565b906020808351928381520192019060005b8181106112b15750505090565b82518452602093840193909201916001016112a4565b906020610da5928181520190611293565b34610443576112e636610b76565b906112f082613069565b9160005b81811061131157604051602080825281906105c590820187611293565b806113276113226001938587612dc0565b614409565b611331828761309b565b52016112f4565b3461044357600036600319011261044357602060ff60115460081c166040519015158152f35b9181601f84011215610443578235916001600160401b038311610443576020808501946102a0850201011161044357565b9181601f84011215610443578235916001600160401b038311610443576020808501948460051b01011161044357565b34610443576060366003190112610443576004356001600160401b038111610443576113ef90369060040161135e565b6024356001600160401b0381116104435761140e90369060040161138f565b6044356001600160401b0381116104435761142d90369060040161138f565b9490928285148015906114d0575b6114bf57909336829003601e1901919060005b81811061145757005b6114628183896130af565b90858110156114ba578060051b84013585811215610443578401918235926001600160401b03841161044357602001908336038213610443576001936114b4926114ad858e8d6130c0565b359261325b565b0161144e565b612daa565b633009a29d60e01b60005260046000fd5b508585141561143b565b34610443576000366003190112610443576114f3614094565b60ff19601154166011557ff9b5d9ff43c04557eb813158a432098c5d195947516dd9795ef5a11ecb047f36600080a1005b346104435760e03660031901126104435761153e36610698565b60c4359061154b82610432565b61155481613fb0565b9182600052600a60205260406000209065ffffffffffff600283015460301c16156115aa57906115a461159e611596611261959461ac1d6105c5981890612bf2565b933690612e43565b91612ec7565b906146e7565b83631fd4ba0360e01b60005260045260246000fd5b34610443576040366003190112610443576004356001600160401b0381116104435736602382011215610443578060040135906115fb82610cc4565b916116096040519384610c93565b8083526024602084019160051b8301019136831161044357602401905b82821061166657836024356001600160401b038111610443576105c59161165461165a923690600401610cdb565b906130d0565b604051918291826112c7565b60208091833561167581610432565b815201910190611626565b346104435760c036600319011261044357610e3a61169d36610698565b613143565b34610443576020366003190112610443576004356116bf81610432565b6116c7614094565b60018060a01b031680600052600d602052600160ff60406000205416151503611731576001600160a01b0381166000908152600d60205260409020805460ff191690557fdfb945e5b80afc93bd56261ec23d264f7bdefcb9dee18ba4781ec206fe7a1dc7600080a2005b60405162461bcd60e51b8152602060048201526013602482015272185b1c9958591e48189b1858dadb1a5cdd1959606a1b6044820152606490fd5b3461044357602036600319011261044357600435600052600b602052602060ff604060002054166040519015158152f35b34610443576117ab36610b76565b906117b582613069565b9160005b8181106117d657604051602080825281906105c590820187611293565b806117ec6117e76001938587612dc0565b6140a8565b6117f6828761309b565b52016117b9565b3461044357600036600319011261044357602060ff601154166040519015158152f35b346104435760203660031901126104435760043561183d81610432565b611845614094565b6001600160a01b03168015611895576020817f2c8741c51ef15572035be75af521ed4878a6e3406c7fdea3494b5fbffdc107c6926001600160601b0360a01b6009541617600955604051908152a1005b634e487b7160e01b600052600160045260246000fd5b34610443576000366003190112610443576020600f54604051908152f35b34610443576000366003190112610443576118e2614094565b600680546001600160a01b03199081169091556005805491821690556000906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b3461044357600036600319011261044357602061194b61444b565b604051908152f35b3461044357600036600319011261044357600654336001600160a01b03909116036119c857600680546001600160a01b0319908116909155600580543392811683179091556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a3005b63118cdaa760e01b6000523360045260246000fd5b34610443576119eb36610b76565b4265ffffffffffff16919060005b818110611a0257005b611a0d818385612dc0565b90611a16614094565b60408201918235611a2681610432565b6001600160a01b03166000908152600d6020526040902054611a4a9060ff16612cde565b611a5381613fb0565b90611a74610728611a6e84600052600a602052604060002090565b95612cd4565b90600285019165ffffffffffff611a95845465ffffffffffff9060301c1690565b16611c7d5760808201611aaa61074582612d2f565b421061110b57506040516316d3df1560e31b81526001600160a01b03919091169590926020846004818a5afa9283156109d557600494600094611c5d575b5060018301546020611afd610f6a8360801c90565b996040519788809263313ce56760e01b82525afa9081156109d557611c086108df611c1d968f95611bde8c9760019f611b8e61100e7fafeed4501a6753eefb924ea0eeb9a58b8d2ad05c8610190cd5f2c7160341a2559f8f909a6000805160206155388339815191529c611bb4956110969d600092611c3d575b50611b818a612da0565b9261100860208c01612da0565b8b54600160601b600160e01b03191660609190911b600160601b600160e01b0316178b55565b89546bffffffffffff000000000000191660309190911b6bffffffffffff00000000000016178955565b611be781614409565b9384926108966001600160801b03851661089183546001600160801b031690565b611c1861072860a0339301612cd4565b614149565b604080519283526001600160801b0391909116602083015290a2016119f9565b611c5691925060203d81116109ce576109c08183610c93565b9038611b77565b611c7691945060203d81116109ce576109c08183610c93565b9238611ae8565b6366ddd3a160e11b600052600484905260246000fd5b346104435761012036600319011261044357611cae36610698565b60c4359060e435611cbe81610432565b6101043591611ccc83610432565b60ff60115416611d5757610e3a93611d50604051611ce981610c3c565b6000815260006020820152600060408201526000606082015260006080820152611d116131f7565b60a0820152600060c0820152600060e08201526000610100820152611d346131f7565b6101208201526000610140820152611d4a61444b565b906145f8565b339261494b565b634815836b60e11b60005260046000fd5b3461044357600036600319011261044357611d81614094565b600160ff1960115416176011557f05204c23a38d23799ab593b867a0a8f7bb23ba80aa8308107716de014e257d9b600080a1005b3461044357600036600319011261044357611e48611df27f53696c696361506f6f6c7300000000000000000000000000000000000000000b615084565b6105c5611e1e7f31000000000000000000000000000000000000000000000000000000000000016150e8565b611e56611e2961304d565b91604051958695600f60f81b875260e0602088015260e0870190610526565b908582036040870152610526565b90466060850152306080850152600060a085015283820360c0850152611293565b34610443576020366003190112610443577fa8d4f499ed89ed61915e14bec2bd7bea8fb6c9701f14ce893bbc2e847d920d326020600435611eb6614094565b80600e55604051908152a1005b346104435760e036600319011261044357611edd36610698565b60c435611ee981610432565b611ef282613fb0565b9182600052600a60205260406000209165ffffffffffff600284015460301c16156115aa5790611f32611f2c6105c5956112619594612bf2565b92612ec7565b906148f6565b34610443576000366003190112610443576005546040516001600160a01b039091168152602090f35b6040600319820112610443576004356001600160401b0381116104435781611f8b91600401610b46565b92909291602435906001600160401b03821161044357610ba09160040161138f565b3461044357611fbb36611f61565b80839493036114bf57611fcd84613069565b9360005b818110611fe657604051806105c588826112c7565b80611ff7610bdf6001938589612dc0565b600052600a60205261203660406000205461203061202961201985898b6130c0565b356001600160801b038416613228565b9160801c90565b9061323b565b612040828961309b565b5201611fd1565b346104435761205536611f61565b9061205e614189565b8183036114bf5760005b838110612076576001600755005b806120996120876001938789612dc0565b6120928387876130c0565b35906141ab565b01612068565b34610443576102e0366003190112610443576120ba3661114c565b6102a4356001600160401b03811161044357366023820112156104435780600401356001600160401b03811161044357366024828401011161044357610e3a9260246102c43593019061325b565b34610443576020366003190112610443576004356001600160401b0381116104435761213890369060040161135e565b60005b81811061214457005b61214f8183856130af565b803561215a81610432565b6001600160a01b038116903382036121c55750509061218360019261217d61444b565b90613e0c565b61219a610aba82600052600b602052604060002090565b7fdae6f8929d076546361068a77fbf488bf65e58a76625628ede047a30311456a9600080a20161213b565b6121ce90610432565b6365d0b58b60e11b6000523360045260245260446000fd5b346104435760403660031901126104435760043561220381610432565b6024359081151590818303610443576001600160a01b03811692831561228e5761224f6122609233600052600160205260406000209060018060a01b0316600052602052604060002090565b9060ff801983541691151516179055565b6040519081527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c3160203392a3005b62ced3e160e81b600052600060045260246000fd5b34610443576020366003190112610443576004356122bf614094565b6103e881116122f9576020817fd5862782a16cfe1b4efd87aa8ff52fe97b1b3300d25bbf2719b5cbd413cd9cd492600855604051908152a1005b60405162461bcd60e51b815260206004820152601960248201527f43616e6e6f7420657863656564206d61782066656520425053000000000000006044820152606490fd5b3461044357602036600319011261044357602060043561ac1d60405191188152f35b34610443576102c036600319011261044357602061194b6123803661114c565b6102a43590613e0c565b34610443576000366003190112610443576009546040516001600160a01b039091168152602090f35b346104435760c036600319011261044357602061194b610bdf36610698565b346104435760003660031901126104435760206040516127108152f35b34610443576123fd36611f61565b9050819291036114bf5761241082613069565b9160005b81811061242957604051806105c586826112c7565b8061243a610bdf6001938587612dc0565b6124448133612bf2565b61248c61247a3361246361ac1d86186000526000602052604060002090565b9060018060a01b0316600052602052604060002090565b5492600052600a602052604060002090565b91808210156124d6575061203061100e6124bd6124c49454936124b861100e866001600160801b031690565b613228565b9260801c90565b6124ce828761309b565b525b01612414565b905061203061100e6124bd6124fa9454936124b861100e866001600160801b031690565b612504828761309b565b526124d0565b34610443576020366003190112610443577f9ee70d55a8fb5949bbafdc2c166db4f6b56a7f6827fcfc91202d433174fddd0d6020600435612549614094565b80600f55604051908152a1005b34610443576020366003190112610443576020600435604051908152f35b346104435760003660031901126104435761258d614094565b6011805461ff0019169055005b6104539092919260c08060e08301956001600160801b0381511684526001600160801b0360208201511660208501526001600160801b0360408201511660408501526001600160801b03606082015116606085015265ffffffffffff608082015116608085015261261a60a082015160a086019065ffffffffffff169052565b01516001600160801b0316910152565b3461044357602036600319011261044357600435600060c060405161264e81610c5d565b8281528260208201528260408201528260608201528260808201528260a08201520152600052600a6020526105c56126896040600020612ec7565b6040519182918261259a565b34610443576000366003190112610443576020600e54604051908152f35b34610443576000366003190112610443576006546040516001600160a01b039091168152602090f35b3461044357604036600319011261044357602060ff61273860043561270081610432565b6024359061270d82610432565b60018060a01b03166000526001845260406000209060018060a01b0316600052602052604060002090565b54166040519015158152f35b3461044357600036600319011261044357602060405161ac1d8152f35b34610443576040366003190112610443576004356001600160401b03811161044357612791903690600401610b46565b6024356001600160401b038111610443576127b0903690600401610b46565b92909160005b8181106127e35750505060005b8281106127cc57005b806127dd61128e6001938686612dc0565b016127c3565b806127f461169d6001938587612dc0565b016127b6565b346104435760a03660031901126104435760043561281781610432565b60243561282381610432565b60443590606435926084356001600160401b0381116104435761284a903690600401610d8a565b926001600160a01b03821633811415806128ed575b6128d5576001600160a01b038416156128bf57156128aa57610e3a946128a260405192600184526020840152604083019160018352606084015260808301604052565b929091614d56565b626a0d4560e21b600052600060045260246000fd5b632bfa23e760e11b600052600060045260246000fd5b63711bec9160e11b6000523360045260245260446000fd5b50600081815260016020908152604080832033845290915290205460ff161561285f565b346104435760203660031901126104435760043561292e81610432565b612936614094565b600680546001600160a01b0319166001600160a01b039283169081179091556005549091167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e22700600080a3005b346104435761299036610b76565b4265ffffffffffff16919060005b8181106129a757005b6129b2818385612dc0565b906129bb614094565b604082019182356129cb81610432565b6001600160a01b03166000908152600d60205260409020546129ef9060ff16612cde565b6129f881613fb0565b90612a13610728611a6e84600052600a602052604060002090565b906060810191612a2561074584612d2f565b4210612bc8576002860165ffffffffffff612a46825465ffffffffffff1690565b16612bb257805465ffffffffffff191665ffffffffffff8b16179055604051630198a77d60e11b81526001600160a01b03919091169290602081600481875afa9081156109d557600091612b94575b50612ac36001600160801b0360018901921682906001600160801b03166001600160801b0319825416179055565b6040516316d3df1560e31b815290602082600481885afa9182156109d5576001987f8da731be8204f25f24740734bc94894e24bf5606c951e71acc15bff0e1a68a9f96612b3e6001600160801b03612b73968b95600091612b7c575086546001600160801b0316911660801b6001600160801b031916178555565b612b4a610872886140a8565b826000805160206155388339815191526108f560a08a01946108df8133611c186107288a612cd4565b0390a20161299e565b6109c8915060203d81116109ce576109c08183610c93565b612bac915060203d81116109ce576109c08183610c93565b38612a95565b6309ed6f7160e11b600052600485905260246000fd5b610a0c610a1c84612d2f565b34610443576000366003190112610443576020600854604051908152f35b6000918252602082815260408084206001600160a01b03909316845291905290205490565b90600182811c92168015612c47575b6020831014612c3157565b634e487b7160e01b600052602260045260246000fd5b91607f1691612c26565b60009291815491612c6183612c17565b8083529260018116908115612cb75750600114612c7d57505050565b60009081526020812093945091925b838310612c9d575060209250010190565b600181602092949394548385870101520191019190612c8c565b915050602093945060ff929192191683830152151560051b010190565b35610da581610432565b15612ce557565b60405162461bcd60e51b8152602060048201526012602482015271092dcecc2d8d2c8a6d2d8d2c6c292dcc8caf60731b6044820152606490fd5b65ffffffffffff81160361044357565b35610da581612d1f565b90816020910312610443575190565b6040513d6000823e3d90fd5b634e487b7160e01b600052601160045260246000fd5b906001600160801b03809116911603906001600160801b038211612d8a57565b612d54565b6001600160801b0381160361044357565b35610da581612d8f565b634e487b7160e01b600052603260045260246000fd5b91908110156114ba5760c0020190565b939291906001600160a01b0385163381141580612e09575b6128d5576001600160a01b038216156128bf57156128aa5761045394614d56565b50600081815260016020908152604080832033845290915290205460ff1615612de8565b359061045382612d1f565b359061045382612d8f565b91908260c091031261044357604051612e5b81610c78565b60a0612ec28183958035612e6e81612d8f565b85526020810135612e7e81612d8f565b60208601526040810135612e9181610432565b60408601526060810135612ea481612d1f565b60608601526080810135612eb781612d1f565b608086015201610448565b910152565b90610453604051612ed781610c5d565b60c0612f5b600283966001600160801b038154818116875260801c166020860152612f2a612f1a60018301546001600160801b0380821616604089015260801c90565b6001600160801b03166060870152565b015465ffffffffffff8116608085015265ffffffffffff603082901c1660a085015260601c6001600160801b031690565b6001600160801b0316910152565b612f7281613fb0565b80600052600a60205260406000209065ffffffffffff80600284015460301c161615613039577ff1e780e78d89d283caba1fefbe6d85a112fb930e5cb9544301096a011c7bafb461ac1d82189361301260a0612fef612fdf336124638a6000526000602052604060002090565b5480976115a461159e3688612e43565b92612ffb87893361475c565b0161300d8333611c1861072885612cd4565b612cd4565b604080519586526001600160a01b039091166020860152840152339280606081015b0390a4565b631fd4ba0360e01b60005260045260246000fd5b6040519061305c602083610c93565b6000808352366020840137565b9061307382610cc4565b6130806040519182610c93565b8281528092613091601f1991610cc4565b0190602036910137565b80518210156114ba5760209160051b010190565b91908110156114ba576102a0020190565b91908110156114ba5760051b0190565b9190918051835180820361312c5750506130ea8151613069565b9060005b8151811015613125578061311460019260051b6020808287010151918901015190612bf2565b61311e828661309b565b52016130ee565b5090925050565b635b05999160e01b60005260045260245260446000fd5b61314c81613fb0565b9081600052600a602052604060002065ffffffffffff600282015460301c16156131e2577ff1e780e78d89d283caba1fefbe6d85a112fb930e5cb9544301096a011c7bafb46131d09261301260a06131d687958660005260006020526131c760406000203360018060a01b0316600052602052604060002090565b54978891612ec7565b856148f6565b92612ffb87873361475c565b82631fd4ba0360e01b60005260045260246000fd5b6040519061320482610c78565b600060a0838281528260208201528260408201528260608201528260808201520152565b81810292918115918404141715612d8a57565b8115613245570490565b634e487b7160e01b600052601260045260246000fd5b91613264614189565b6011549160ff8316611d575761328e61328461327e61444b565b86613e0c565b9360081c60ff1690565b1580613cb3575b613c9d576132b76132b084600052600b602052604060002090565b5460ff1690565b613c87576132cf6132c9368484610d53565b84614c55565b6132db61072886612cd4565b6001600160a01b0390911603613c67575050602082016001600160a01b0361330282612cd4565b16151580613c4c575b613c2057506040820161331d81612d2f565b65ffffffffffff42911610613bf5575060a082019265ffffffffffff61336a600261335a61334a88613fb0565b600052600a602052604060002090565b015460301c65ffffffffffff1690565b16613bd6576101c0830192613389610745600261335a61334a88613fb0565b613bd657608081016001600160801b036133a282612da0565b16613aec575b6101a08201916133ba61100e84612da0565b6139cf575b6101608101926133d161100e85612da0565b61375a575b506102808101916133e961100e84612da0565b6134ce575b5061345c8461347a61347461346e61346e6134686134626134c1988d6134497f40e693fe7b2f0b2982286c4522e2b45296dfb9b66206b5bc1551a29dbcc538619e61344383600052600c602052604060002090565b54613d2e565b998a91600052600c602052604060002090565b55612cd4565b9d613fb0565b9b613fb0565b96612da0565b92613d05565b91604051958695339b60018060a01b03169a8792936001600160801b0360a09581939998979460c087019a8752602087015216604085015216606083015260808201520152565b0390a46104536001600755565b60046020613511610728610728610200870161300d61350c6132b06134f284612cd4565b6001600160a01b03166000908152600d6020526040902090565b613ced565b60405163313ce56760e01b815292839182905afa9081156109d55760009161373b575b5061353e88612da0565b9061354c6101e08501612da0565b8761355687612da0565b6001600160801b03169061356991613228565b670de0b6b3a764000090049061357e93614cbd565b908660085461358d9084613228565b61271090046102608501906135a182612cd4565b6001600160a01b031660095482906001600160a01b0316336135c293614c6b565b6135cb8b613fb0565b6135d48c613fb0565b926135de90612cd4565b604080519283526001600160a01b0391909116602083015281019190915233907fd251a84f70b303473d1a800f3bee17030d3936ce3f7c39e96744648d7490641190606090a48561362e85612da0565b6001600160801b03169061364191613228565b670de0b6b3a764000090043361365685612cd4565b33613662938b8d61494b565b61366b88613fb0565b61367484612cd4565b9161367e8a613fb0565b61ac1d1892898961368e89612da0565b6001600160801b0316906136a191613228565b670de0b6b3a76400009004958a6136ba60608a01612cd4565b946136c490612da0565b6001600160801b0316906136d791613228565b670de0b6b3a764000090046136eb91613d21565b604080519283526020830196909652948101959095526001600160a01b039182166060860152608085019390935291909116913391906000805160206155588339815191529060a090a4386133ee565b613754915060203d6020116109ce576109c08183610c93565b38613534565b6004602061377d61072861072860e0870161300d61350c6132b06134f284612cd4565b60405163313ce56760e01b815292839182905afa9081156109d5576000916139b0575b506137aa89612da0565b906137b760c08501612da0565b876137c188612da0565b6001600160801b0316906137d491613228565b670de0b6b3a76400009004906137e993614cbd565b866008546137f79083613228565b612710900461014085019061380b82612cd4565b6001600160a01b031660095482906001600160a01b03163361382c93614c6b565b6138358c613fb0565b61ac1d186138428d613fb0565b9261384c90612cd4565b604080519283526001600160a01b0391909116602083015281019190915233907fd251a84f70b303473d1a800f3bee17030d3936ce3f7c39e96744648d7490641190606090a4888661389d87612da0565b6001600160801b0316906138b091613228565b670de0b6b3a76400009004886138c586612cd4565b6138ce87612cd4565b9233926138da9561494b565b6138e389613fb0565b6138ec84612cd4565b926138f68b613fb0565b61ac1d189289896139068a612da0565b6001600160801b03169061391991613228565b670de0b6b3a76400009004918a6139336101808a01612cd4565b9461393d90612da0565b6001600160801b03169061395091613228565b670de0b6b3a7640000900461396491613d21565b604080519283526020830196909652948101919091526001600160a01b0391821660608201526080810193909352339316916000805160206155588339815191529060a090a4386133d6565b6139c9915060203d6020116109ce576109c08183610c93565b386137a0565b61018081016139dd81612cd4565b6001600160a01b03166139ef83612cd4565b866139f987612da0565b6001600160801b031690613a0c91613228565b670de0b6b3a764000090049033613a2293614c6b565b613a2b88613fb0565b613a3483612cd4565b90613a3e8a613fb0565b9187613a4d6101608701612da0565b6001600160801b031690613a6091613228565b670de0b6b3a7640000900493613a7590612cd4565b908989613a818a612da0565b6001600160801b031690613a9491613228565b604080519283526020830196909652948101959095526001600160a01b039182166060860152670de0b6b3a7640000909304608085015291909116913391906000805160206155588339815191529060a090a46133bf565b848460608401613b34613b0161072883612cd4565b613b0a87612cd4565b90613b2c613b1e8a6124b861100e8b612da0565b670de0b6b3a7640000900490565b913391614c6b565b600080516020615558833981519152613b4c84613fb0565b9186613bce613b7d610722613b1e8c6124b861100e610280613b76613b708a612cd4565b9e613fb0565b9801612da0565b613b90613b1e8c6124b861100e8d612da0565b604080519889526020890194909452928701939093526001600160a01b039283166060870152608086019190915233959091169390819060a0820190565b0390a46133a8565b610a0c613be285613fb0565b6366ddd3a160e11b600052600452602490565b613c01610a0c91612d2f565b632676a8cd60e21b60005265ffffffffffff1660045242602452604490565b613c2c610a0c91612cd4565b6365d0b58b60e11b600052336004526001600160a01b0316602452604490565b50613c5681612cd4565b6001600160a01b031633141561330b565b613c83604051928392634f11230760e01b845260048401613cc5565b0390fd5b63310cc63360e21b600052600483905260246000fd5b6318f8b05760e21b600052600483905260246000fd5b50670de0b6b3a7640000851415613295565b90918060409360208452816020850152848401376000828201840152601f01601f1916010190565b15613cf457565b637209d83160e11b60005260046000fd5b670de0b6b3a76400000390670de0b6b3a76400008211612d8a57565b91908203918211612d8a57565b91908201809211612d8a57565b6104539092919260c0613dfe60a060e08401967f25036ae61bfc8d8512539bb2b64fb5ba7dcad72dca292e53cbc1b911b11a73e085526001600160801b038135613d8481612d8f565b1660208601526001600160801b036020820135613da081612d8f565b1660408601526040810135613db481610432565b600180841b0316606086015265ffffffffffff6060820135613dd581612d1f565b166080860152613df8613dea60808301612e2d565b65ffffffffffff1686840152565b01610448565b6001600160a01b0316910152565b90610da5916040516020810190613e3881613e2a60a0860185613d3b565b03601f198101835282610c93565b51902090613f8f6040516020810190613e5981613e2a6101c0870185613d3b565b51902092613e2a613e6984612cd4565b94613e7660208601612cd4565b92613e8360408701612d2f565b95613e9060608201612cd4565b91613e9d60808301612da0565b90613eab6101608401612da0565b613eb86101808501612cd4565b92613ed3610280613ecc6101a08801612da0565b9601612da0565b956040519b8c9a60208c019e8f7fe150cacb97f549f136b51aebe10986dc8bb73d35181d725b8a20dac1ac0c26b781526001600160a01b039182166020820152918116604083015265ffffffffffff9092166060820152911660808201526001600160801b0391821660a0820152911660c0820152610180810196959490939092909160e08501526001600160a01b03166101008401526001600160801b03166101208301526001600160801b03166101408201526101600152565b519020906042916040519161190160f01b8352600283015260228201522090565b803590613fbc82612d8f565b602081013590613fcb82612d8f565b604081013590613fda82610432565b6060810135613fe881612d1f565b60a0608083013592613ff984612d1f565b01359261400584610432565b6040519460208601966001600160801b03199060801b1687526001600160801b03199060801b1660308601526001600160601b03199060601b16604085015265ffffffffffff60d01b9060d01b16605484015265ffffffffffff60d01b9060d01b16605a8301526001600160601b03199060601b1660608201526054815261408e607482610c93565b51902090565b6005546001600160a01b031633036119c857565b613b1e610da5916140b881613fb0565b600052600a60205265ffffffffffff60606001600160801b0380604060002054161692016140f681356140ea81612d1f565b600e5493849116613d2e565b421115614140576141279161411961411361074561411e94612d2f565b42613d21565b613d21565b60105490613228565b600f5490818111156141395750613228565b9050613228565b50506000614127565b60405163a9059cbb60e01b60208201526001600160a01b03909216602483015260448083019390935291815261045391614184606483610c93565b614cfb565b60026007541461419a576002600755565b633ee5aeb560e01b60005260046000fd5b6141b481613fb0565b80600052600a6020527f12f5b4ba74ddf6fb0dac562f2e5020a8bb1172bdf51f14af3e551439d249354860406000209260a084549161425261423261422161421161420a8b6001600160801b03808a1616613228565b9660801c90565b956001600160801b038716612030565b946001600160801b038a1690612d6a565b87546001600160801b031660809190911b6001600160801b031916178755565b61428f61ac1d86189661426689883361475c565b61427189893361475c565b6108966001600160801b03861661089183546001600160801b031690565b016142a18233611c1861072885612cd4565b6001600160a01b03906142b390612cd4565b1694613034604051928392339787859094939260609260808301968352602083015260408201520152565b9194906001600160801b0380911695169283156143b55785831061433f576143316001600160801b039461432c8693614326614320610da59b61433899613d21565b91614caf565b90613228565b61323b565b911661548f565b91166154a1565b60405162461bcd60e51b815260206004820152604260248201527f496e6465782062616c616e6365206d757374206265206772656174657220746860448201527f616e206f7220657175616c20746f2074686520696e697469616c2062616c616e606482015261636560f01b608482015260a490fd5b60405162461bcd60e51b815260206004820152602660248201527f496e64657820736861726573206d7573742062652067726561746572207468616044820152656e207a65726f60d01b6064820152608490fd5b613b1e610da59161441981613fb0565b600052600a60205265ffffffffffff60806001600160801b0380604060002054161692016140f681356140ea81612d1f565b307f000000000000000000000000a979e1d73f233087d3808cfc02c119f5ea75de366001600160a01b03161480614538575b156144a6577f320f26adc077304999f062fae580e4fd6d692f9495faaf2e66443a4a4f3473f990565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f9af5eb6c7b3411798e14119f4f01fa9e89deb420727baaf4d3298ba45ab0df5160408201527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260a0815261408e60c082610c93565b507f0000000000000000000000000000000000000000000000000000000000002105461461447d565b91909160c060e08201937f25036ae61bfc8d8512539bb2b64fb5ba7dcad72dca292e53cbc1b911b11a73e083526001600160801b0381511660208401526001600160801b03602082015116604084015260018060a01b03604082015116606084015265ffffffffffff606082015116608084015265ffffffffffff60808201511660a084015260a0600180821b0391015116910152565b90610da59160a081015160405161461781613e2a602082019485614561565b51902090613f8f61012082015160405161463981613e2a602082019485614561565b5190208251909390613e2a906001600160a01b031660208501519095906001600160a01b031692614673604087015165ffffffffffff1690565b60608701519096906001600160a01b03169161469960808301516001600160801b031690565b906146ae60c08401516001600160801b031690565b60e08401516001600160a01b031692613ed36101406146d86101008801516001600160801b031690565b9601516001600160801b031690565b602061473d610da5946124b86001600160801b03948561473686830192828061472a8c8280614720818b51168260c08601511690612d6a565b1691511690613228565b95511691511690612d6a565b169061323b565b920151169061323b565b60405190614756602083610c93565b60008252565b926001600160a01b0384169290919083156128aa5761479860405192600184526020840152604083019160018352606084015260808301604052565b919060209160006040516147ac8582610c93565b5281518451908181036148df57505060005b8251811015614854578060051b8480828601015191870101516147ef89612463846000526000602052604060002090565b5481811061481d578961246360019594936148169303936000526000602052604060002090565b55016147be565b6040516303dee4c560e01b81526001600160a01b038b16600482015260248101919091526044810182905260648101839052608490fd5b509450909160009392600183511485146148ab579182015191015160408051928352602083019190915233917fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f629181908101613034565b506130347f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb916040519182913395836151fd565b635b05999160e01b60005260045260245260446000fd5b602061473d610da5946124b86001600160801b0394856147368160c08a015116876149368461492b8735809561089182612d8f565b16858d511690613228565b94013561494281612d8f565b61089182612d8f565b949290946040810194853561495f81610432565b6001600160a01b03166000908152600d60205260409020546149839060ff16612cde565b8493816149996001600160801b03831115614be9565b6149a284613fb0565b9765ffffffffffff6149c3600261335a8c600052600a602052604060002090565b16614bd357906149da610728600496959493612cd4565b966149ef8a600052600a602052604060002090565b6149f886612da0565b996020614a06818901612da0565b60405163313ce56760e01b8152909b90998a9182906001600160a01b03165afa998a156109d557614a6a8d9b8760a0937f3226776085fb473b91e74f4a2b3e96cd425fcc3e1bc0ee18410353c435a7e9d39f614b9d9d600094614bb2575b50614cbd565b97614aad614a916001600160801b038b16614a8c87546001600160801b031690565b614c35565b85546001600160801b0319166001600160801b03909116178555565b0195614ac788614abf6107288a612cd4565b8c3091614c6b565b6001600160a01b031615614baa575b6001600160a01b031615614ba2575b614b2190614b016001600160801b038616614a8c835460801c90565b81546001600160801b031660809190911b6001600160801b031916179055565b614b5061ac1d891894614b3d614b35614747565b868c87614f3f565b61300d614b48614747565b868886614f3f565b604080519c8d5260208d0199909952978b01939093526001600160a01b0392831660608b0152821660808a015260a089015293841660c088015260e0870152911693908190610100820190565b0390a3565b339150614ae5565b339350614ad6565b614bcc91945060203d6020116109ce576109c08183610c93565b9238614a64565b6366ddd3a160e11b600052600489905260246000fd5b15614bf057565b60405162461bcd60e51b815260206004820152601960248201527f536861726573206578636565642075696e74313238206d6178000000000000006044820152606490fd5b906001600160801b03809116911601906001600160801b038211612d8a57565b610da591614c629161511f565b9092919261517b565b6040516323b872dd60e01b60208201526001600160a01b03928316602482015292909116604483015260648083019390935291815261045391614184608483610c93565b604d8111612d8a57600a0a90565b916001600160801b03614cd6614cdc9461432094612d6a565b16613228565b8015614ced57808204910615150190565b6365244e4e6000526004601cfd5b906000602091828151910182855af115612d48576000513d614d4d57506001600160a01b0381163b155b614d2c5750565b635274afe760e01b60009081526001600160a01b0391909116600452602490fd5b60011415614d25565b94939290919384518251908181036148df5750506001600160a01b0386811695861515959185168015159391929060005b8451811015614e71578060051b90898988602080868b010151958c01015192614dea575b93600194614dbd575b50505001614d87565b614de091612463614dd8926000526000602052604060002090565b918254613d2e565b9055388981614db4565b50509091614e068d612463836000526000602052604060002090565b54828110614e3a578291898f614e31600197968f950391612463856000526000602052604060002090565b55909450614dab565b6040516303dee4c560e01b81526001600160a01b038f16600482015260248101919091526044810183905260648101829052608490fd5b509198959392979096506001885114600014614f055760208881015186820151604080519283529282015233917fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f6291a45b614ece575b5050505050565b8451600103614ef457602080614eea96015192015192336153ef565b3880808080614ec7565b614f00949192336152ba565b614eea565b6040517f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb339180614f37898d836151fd565b0390a4614ec2565b6001600160a01b038116939290919084156128bf57614f7b60405192600184526020840152604083019160018352606084015260808301604052565b9281518451908181036148df57505060005b8251811015614fcd578060019160051b614fc5614dd887612463602080868b010151958c010151946000526000602052604060002090565b905501614f8d565b5092919360018251146000146150485760208281015184820151604080519283529282015260009133917fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f629190a45b805160010361503c579060208061045395930151910151916000336153ef565b610453936000336152ba565b60006040517f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb33918061507c8888836151fd565b0390a461501c565b60ff81146150ce5760ff811690601f82116150bd5760408051926150a88285610c93565b6020808552840191601f190136833783525290565b632cd44ac360e21b60005260046000fd5b50604051610da5816150e1816003612c51565b0382610c93565b60ff811461510c5760ff811690601f82116150bd5760408051926150a88285610c93565b50604051610da5816150e1816004612c51565b81519190604183036151505761514992506020820151906060604084015193015160001a906154ae565b9192909190565b505060009160029190565b6004111561516557565b634e487b7160e01b600052602160045260246000fd5b6151848161515b565b8061518d575050565b6151968161515b565b600181036151af5763f645eedf60e01b60005260046000fd5b6151b88161515b565b600281036151d5575063fce698f760e01b60005260045260246000fd5b806151e160039261515b565b146151e95750565b6335e2f38360e21b60005260045260246000fd5b9091615214610da593604084526040840190611293565b916020818403910152611293565b908160209103126104435751610da5816104a6565b6001600160a01b0391821681529116602082015260a060408201819052610da5949193919261527c929161526e9190860190611293565b908482036060860152611293565b916080818403910152610526565b3d156152b5573d9061529b82610d38565b916152a96040519384610c93565b82523d6000602084013e565b606090565b9091949293853b6152ce575b505050505050565b6020936152f091604051968795869563bc197c8160e01b875260048701615237565b038160006001600160a01b0387165af160009181615385575b50615345575061531761528a565b805191908261533e57632bfa23e760e11b6000526001600160a01b03821660045260246000fd5b9050602001fd5b6001600160e01b0319166343e6837f60e01b0161536857503880808080806152c6565b632bfa23e760e11b6000526001600160a01b031660045260246000fd5b6153a891925060203d6020116153af575b6153a08183610c93565b810190615222565b9038615309565b503d615396565b6001600160a01b039182168152911660208201526040810191909152606081019190915260a060808201819052610da592910190610526565b9091949293853b61540257505050505050565b60209361542491604051968795869563f23a6e6160e01b8752600487016153b6565b038160006001600160a01b0387165af16000918161546e575b5061544b575061531761528a565b6001600160e01b031916630dc5919f60e01b0161536857503880808080806152c6565b61548891925060203d6020116153af576153a08183610c93565b903861543d565b908082101561549c575090565b905090565b908082111561549c575090565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841161552b579160209360809260ff60009560405194855216868401526040830152606082015282805260015afa156109d5576000516001600160a01b0381161561551f5790600090600090565b50600090600190600090565b5050506000916003919056fe39cc814c3df1705a9d1bd4ec3a061f6fb23cb831bb8bc16c733ea10f0228624b25dfd61dc56aaa80d21af2bec91e32accf54e832ae0150840f23119063ce2dfea264697066735822122082582ebda6478cd5ed894c9ba3a5d83a076a37f96ac5fcd2aff2d0cb746d75b064736f6c634300081b0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000009cf99d917fb1a5538aa4316c03b5c57293c97c8f00000000000000000000000062e30d1969faf92dc8a3c22a1552eb83763eb372000000000000000000000000000000000000000000000000000000000000012c00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : startFeeBps (uint256): 0
Arg [1] : initialOwner (address): 0x9cF99D917fB1A5538Aa4316c03b5c57293c97C8f
Arg [2] : alkimiyaTreasury (address): 0x62E30D1969FAf92dc8a3C22A1552eB83763eb372
Arg [3] : gracePeriod (uint256): 300
Arg [4] : maxBountyFrac (uint256): 0
Arg [5] : bountyIncreasePerSecond (uint256): 0

-----Encoded View---------------
6 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [1] : 0000000000000000000000009cf99d917fb1a5538aa4316c03b5c57293c97c8f
Arg [2] : 00000000000000000000000062e30d1969faf92dc8a3c22a1552eb83763eb372
Arg [3] : 000000000000000000000000000000000000000000000000000000000000012c
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000000


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.