ETH Price: $1,801.75 (+10.47%)
 

Overview

ETH Balance

0 ETH

ETH Value

$0.00

Token Holdings

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Claim292747872025-04-22 16:22:0118 hrs ago1745338921IN
0x916A4cFC...deed2F393
0 ETH0.000000420.00412565
Claim292565242025-04-22 6:13:1528 hrs ago1745302395IN
0x916A4cFC...deed2F393
0 ETH0.000000210.00218347
Increase Amount292320012025-04-21 16:35:4942 hrs ago1745253349IN
0x916A4cFC...deed2F393
0 ETH0.000000510.00349941
Claim292254662025-04-21 12:57:5946 hrs ago1745240279IN
0x916A4cFC...deed2F393
0 ETH0.000000230.00227804
Claim292135132025-04-21 6:19:332 days ago1745216373IN
0x916A4cFC...deed2F393
0 ETH0.000000260.00253757
Claim292073172025-04-21 2:53:012 days ago1745203981IN
0x916A4cFC...deed2F393
0 ETH0.000000330.00279252
Claim291750412025-04-20 8:57:093 days ago1745139429IN
0x916A4cFC...deed2F393
0 ETH0.000000260.00260179
Claim291690302025-04-20 5:36:473 days ago1745127407IN
0x916A4cFC...deed2F393
0 ETH0.000000330.00280003
Claim291611232025-04-20 1:13:133 days ago1745111593IN
0x916A4cFC...deed2F393
0 ETH0.000000120.00126461
Claim291473072025-04-19 17:32:413 days ago1745083961IN
0x916A4cFC...deed2F393
0 ETH0.000000230.00227967
Increase Amount291027122025-04-18 16:46:114 days ago1744994771IN
0x916A4cFC...deed2F393
0 ETH0.000000260.00179069
Claim291021452025-04-18 16:27:174 days ago1744993637IN
0x916A4cFC...deed2F393
0 ETH0.000000190.00188875
Claim290414792025-04-17 6:45:056 days ago1744872305IN
0x916A4cFC...deed2F393
0 ETH0.000001380.01333328
Increase Amount290073532025-04-16 11:47:336 days ago1744804053IN
0x916A4cFC...deed2F393
0 ETH0.00000030.00204075
Claim289957282025-04-16 5:20:037 days ago1744780803IN
0x916A4cFC...deed2F393
0 ETH0.000000210.0020392
Extend Duration289945862025-04-16 4:41:597 days ago1744778519IN
0x916A4cFC...deed2F393
0 ETH0.000000150.0020467
Claim289945782025-04-16 4:41:437 days ago1744778503IN
0x916A4cFC...deed2F393
0 ETH0.000000210.00204827
Create Lock289784852025-04-15 19:45:177 days ago1744746317IN
0x916A4cFC...deed2F393
0 ETH0.000000620.00302043
Withdraw289784702025-04-15 19:44:477 days ago1744746287IN
0x916A4cFC...deed2F393
0 ETH0.000000430.00302636
Claim289561412025-04-15 7:20:298 days ago1744701629IN
0x916A4cFC...deed2F393
0 ETH0.000000230.00240402
Claim289539922025-04-15 6:08:518 days ago1744697331IN
0x916A4cFC...deed2F393
0 ETH0.000000190.00186022
Claim289502942025-04-15 4:05:358 days ago1744689935IN
0x916A4cFC...deed2F393
0 ETH0.000000250.00248922
Extend Duration289297072025-04-14 16:39:218 days ago1744648761IN
0x916A4cFC...deed2F393
0 ETH0.000000520.00706111
Increase Amount289125432025-04-14 7:07:139 days ago1744614433IN
0x916A4cFC...deed2F393
0 ETH0.000000290.00198903
Claim289087612025-04-14 5:01:099 days ago1744606869IN
0x916A4cFC...deed2F393
0 ETH0.000000210.0020975
View all transactions

Latest 1 internal transaction

Parent Transaction Hash Block From To
229947662024-11-28 7:27:59146 days ago1732778879  Contract Creation0 ETH

Loading...
Loading

Minimal Proxy Contract for 0xde6aa84fdf18479a605a6c3445f3d725c14ea533

Contract Name:
Validator

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion, MIT license

Contract Source Code (Solidity)

Decompile Bytecode Similar Contracts
/**
 *Submitted for verification at basescan.org on 2024-11-28
*/

// File: @openzeppelin/contracts/utils/Panic.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// File: @openzeppelin/contracts/utils/math/SafeCast.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// File: @openzeppelin/contracts/utils/math/Math.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;



/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// File: @openzeppelin/contracts/token/ERC20/IERC20.sol


// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// File: @openzeppelin/contracts/interfaces/IERC20.sol


// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;


// File: @openzeppelin/contracts/utils/introspection/IERC165.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// File: @openzeppelin/contracts/interfaces/IERC165.sol


// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;


// File: @openzeppelin/contracts/interfaces/IERC1363.sol


// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;



/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

// File: @openzeppelin/contracts/utils/Errors.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

// File: @openzeppelin/contracts/utils/Address.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)

pragma solidity ^0.8.20;


/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

// File: @openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol


// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;




/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol


// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;


/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// File: @openzeppelin/contracts/utils/Context.sol


// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// File: @openzeppelin/contracts/interfaces/draft-IERC6093.sol


// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// File: @openzeppelin/contracts/token/ERC20/ERC20.sol


// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;





/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol


// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// File: @openzeppelin/contracts/utils/cryptography/ECDSA.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// File: @openzeppelin/contracts/utils/math/SignedMath.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;


/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// File: @openzeppelin/contracts/utils/Strings.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)

pragma solidity ^0.8.20;



/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// File: @openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;


/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// File: @openzeppelin/contracts/utils/StorageSlot.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// File: @openzeppelin/contracts/utils/ShortStrings.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;


// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

// File: @openzeppelin/contracts/interfaces/IERC5267.sol


// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// File: @openzeppelin/contracts/utils/cryptography/EIP712.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;




/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

// File: @openzeppelin/contracts/utils/Nonces.sol


// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

// File: @openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol


// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.20;






/**
 * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
    bytes32 private constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address signer, address owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC-20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }
}

// File: @openzeppelin/contracts/utils/ReentrancyGuard.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

// File: contracts/interfaces/IValidatorFactory.sol


pragma solidity ^0.8.28;

interface IValidatorFactory {

    error NotAdmin();
    error PoolAlreadyExists();
    error ZeroAddress();
    error NotEnoughAmount();
    error NotEnoughWallet();
    error NotRegisteredValidator();
    error InvalidTimePeriod();
    error PageOutOfBounds();
    
    event ValidatorCreated(address indexed owner, address validator, uint256 validatorLength);

    /// @notice Returns the total number of validators in the system.
    /// @dev This function provides the length of the validator list, indicating how many validators exist in the contract.
    /// @return uint256 The total number of validators.
    function allValidatorsLength() external view returns (uint256);

    /// @notice Checks if the provided address is a registered validator.
    /// @dev This function is used to verify if an address is recognized as a validator in the system.
    /// @param validator The address to check.
    /// @return bool True if the address is a validator, false otherwise.
    function isValidatorl(address validator) external view returns (bool);

    /// @notice Creates a new validator for a given owner, quality, and verifier.
    /// @dev This function is used to create a new validator, initializing it with the provided token address, owner address, and quality level.
    /// @param _token The address of the LRDS.
    /// @param _owner The address of the validator's owner.
    /// @param _quality The quality level of the new validator.
    /// @param _verifier The address of the verifier.
    /// @return validator The address of the newly created validator.
    function createValidator(address _token, address _owner, uint256 _quality, address _verifier) external returns (address validator);

    /// @notice Increases the total staked amount by the specified amount.
    /// @dev This function is used to add a specified amount to the total staked amount across the system.
    /// @param _amount The amount to increase the total staked amount by.
    function addTotalStakedAmount(uint256 _amount) external;

    /// @notice Decreases the total staked amount by the specified amount.
    /// @dev This function is used to subtract a specified amount from the total staked amount across the system.
    /// @param _amount The amount to decrease the total staked amount by.
    function subTotalStakedAmount(uint256 _amount) external;

    /// @notice Increases the total number of staked wallets.
    /// @dev This function is used to increase the number of wallets that have staked tokens in the system.
    function addTotalStakedWallet() external;

    /// @notice Decreases the total number of staked wallets.
    /// @dev This function is used to decrease the number of wallets that have staked tokens in the system.
    function subTotalStakedWallet() external;

    /// @notice Adds a new validator to the total validators list with the specified reward parameters.
    /// @dev This function is used to register a new validator to the system with the total reward parameters, including the start and end time for the reward period.
    /// @param _startTime The start time of the reward period for the new validator.
    /// @param _endTime The end time of the reward period for the new validator.
    /// @param _totalReward The total reward allocated to the new validator for the reward period.
    function addTotalValidators(uint256 _startTime, uint256 _endTime, uint256 _totalReward) external;

    /// @notice Returns the minimum amount required for a given quality level of validator.
    /// @dev This function is used to determine the minimum staked amount required for a validator of a certain quality level.
    /// @param quality The quality level of the validator.
    /// @return uint256 The minimum amount required for the specified quality level.
    function minAmountForQuality(uint256 quality) external returns (uint256);

    /// @notice Returns an array of all validator addresses in the system.
    /// @dev This function is used to retrieve all validator addresses, providing a complete list of validators in the system.
    /// @return address[] The list of all validator addresses.
    function getValidators() external view returns (address[] memory);

}
// File: contracts/interfaces/IValidator.sol


pragma solidity ^0.8.28;

interface IValidator {

    error NotAdmin();
    error NotOwner();
    error NotFactory();
    error NotGovernance();
    error FeeTooHigh();
    error ZeroAmount();
    error AllreadyLocked();
    error NoLockCreated();
    error InsufficientAmount();
    error TimeNotUp();
    error NotEnoughStakeToken();
    error NotEnoughRewardToken();
    error FactoryAlreadySet();
    error InvalidTotalReward();
    error StartTimeNotInFuture();
    error EndTimeBeforeStartTime();
    error StartTimeNotAsExpected();
    error TheSameValue();
    error AutoMaxTime();
    error QualityWrong();
    error SignatureExpired();
    error ValidatorIsClaimed();
    error ZeroAddress();
    error VerificationFailed();
    error AutoMaxNotEnabled();
    error WrongDuration();
    error LockTimeExceeded();
    error ContractPaused();
    error StateUnchanged();
    error InvalidBoostReward();
    error NoReward();
    error AlreadyPurchasedThisQuality();
    error InsufficientNPPoint();
    error InsufficientLockAmount();
    error GreaterThanMaxTime();
    error NotValidValidator();
    error NotSuperValidator();

    event ClaimFees(address indexed sender, uint256 amount);
    event Deposit(address indexed sender, uint256 amount, uint256 startTime, uint256 duration, uint256 endTime, uint256 time);
    event Claim( address indexed sender, uint256 userClaimAmount, uint256 feeAmount);
    event Withdraw( address indexed sender, uint256 amount, uint256 time);
    event SetAutoMax(address indexed sender, bool open);
    event PurchaseValidator(address indexed sender, uint256 NP, uint256 quality);
    event SetDepositFee(address indexed sender, uint256 fee);
    event SetClaimFee(address indexed sender, uint256 fee);
    event BoostRewardAdded(uint256 startTime, uint256 endTime, uint256 totalReward);
    event BoostRewardClaimed(address indexed sender, uint256 pendingBoostReward);
    event StakeForUser(address indexed sender, uint256 amount);
    event ValidatorOwnerChanged(address indexed newOwner);

    /// @notice Returns the address of the PoolFactory that created this contract.
    /// @dev This function returns the address of the `PoolFactory` contract, which is responsible for deploying and managing the pool contract.
    /// @return address The address of the PoolFactory contract that created this contract.
    function factory() external view returns (address);

    /// @notice Initializes the Validator contract with necessary parameters.
    /// @param _token The address of the LRDS.
    /// @param _admin The address of the admin who can manage the contract.
    /// @param _owner The address of the contract owner who can claim rewards and manage the pool.
    /// @param _validatorId The unique identifier for the validator. This will help distinguish different validators in the system.
    /// @param _quality The quality level of the validator (used for ranking or other features).
    /// @param _verifier The address of the verifier.
    /// @param _currentQualityCount The address of the verifier.
    /// @dev This function can only be called once during the initialization phase to set up the validator contract with all necessary parameters.
    function initialize(address _token, address _admin, address _owner, uint256 _validatorId, uint256 _quality, address _verifier, uint256 _currentQualityCount) external;

    /// @notice Creates a new lock for a specified amount of tokens with a defined duration.
    /// @param _amount The amount of tokens to lock for the specified duration.
    /// @param _lockDuration The duration for which the tokens will be locked (in seconds).
    /// @dev The lock duration must be valid and the reward period must be active to perform this action. 
    /// Users will not be able to unlock their tokens before the lock duration has passed.
    function createLock(uint256 _amount, uint256 _lockDuration) external;
        
    /// @notice Increases the amount of staked tokens in the existing lock.
    /// @param _amount The additional amount of tokens to stake. 
    /// @dev The reward period must be active for the increase to take effect. 
    /// This function allows users to add tokens to their current lock without creating a new lock.
    function increaseAmount(uint256 _amount) external;
        
    /// @notice Extends the lock duration of the staked tokens.
    /// @param _lockDuration The new duration to extend the lock (in seconds).
    /// @dev The reward period must be active for the extension to occur. Users can extend their token lock period, but they cannot shorten it.
    function extendDuration(uint256 _lockDuration) external;
        
    /// @notice Withdraws staked tokens and claims rewards.
    /// @dev Users can only withdraw their tokens after the lock duration has expired. 
    /// This function transfers the staked tokens back to the user and also releases any accumulated rewards.
    function withdraw() external;
        
    /// @notice Claims rewards for the user based on the staked amount.
    /// @dev Users can claim rewards as long as the reward period is still active. Rewards are typically proportional to the amount staked.
    function claim() external;

    /// @notice Sets whether the maximum staking amount should be automatically adjusted.
    /// @param _bool A boolean indicating whether to automatically adjust the maximum staking amount for the user.
    /// @dev This function allows the contract owner or admin to enable or disable the automatic adjustment of the maximum staking amount.
    function setAutoMax(bool _bool) external;

    /// @notice Returns the amount staked by a user and whether automatic max staking adjustment is enabled.
    /// @param _userAddress The address of the user whose staking information is to be retrieved.
    /// @return uint256 The total amount staked by the user.
    /// @return bool A boolean indicating whether the automatic max staking adjustment is enabled for this user.
    function getAmountAndAutoMax(address _userAddress) external view returns (uint256, bool);

    /// @notice Returns the veLrds balance of a user.
    /// @param _user The address of the user whose veLrds balance is to be retrieved.
    /// @return uint256 The amount of veLrds tokens held by the user. 
    /// This is typically used to calculate voting or staking power in governance-related systems.
    function veLrdsBalance(address _user) external view returns (uint256);

    /// @notice Returns whether the validator has been purchased or activated.
    /// @return bool A boolean indicating whether the validator has been purchased (true) or not (false).
    function isClaimed() external view returns (bool);
        
    /// @notice Adds a boost reward for a specific validator within a defined time period.
    /// @param _startTime The start time of the boost period.
    /// @param _endTime The end time of the boost period.
    /// @param _rewardAmount The total amount of reward to be distributed to the validator during the boost period.
    /// @dev This function allows the contract to assign a reward to a validator within a specific time window.
    function addBoostReward(uint256 _startTime, uint256 _endTime, uint256 _rewardAmount) external;

    /// @dev Allows the Governance contract to stake tokens on behalf of a user.
    /// This function can only be called by the authorized Governance contract.
    /// It increases the user's staked balance by the specified amount.
    /// @param _user The address of the user for whom tokens are being staked.
    /// @param _amount The amount of tokens to stake for the user.
    /// @param _fromBoost Whether the boost reward deposit.
    function stakeFor(address _user, uint256 _amount, bool _fromBoost) external;

    /// @dev Checks whether a user has already purchased a validator of a specific quality.
    /// @param _user The address of the user to check.
    /// @param _quality The quality level of the validator.
    /// @return A boolean value indicating whether the user has purchased a validator of the specified quality.
    function havePurchased(address _user, uint256 _quality) external view returns (bool);

    /// @dev Retrieves the total cost of validators associated with a specific user.
    /// @param _user The address of the user to retrieve the total validator cost for.
    /// @return The total cost of validators for the specified user.
    function playerValidatorCosts(address _user) external view returns (uint256);

    /// @dev Updates the purchase status for a specific user and validator quality.
    ///      This function can only be called by a valid Validator contract,
    ///      as ensured by the `onlyValidValidator` modifier.
    /// @param _user The address of the user whose purchase status is being updated.
    /// @param _quality The quality level of the validator being purchased.
    function _updateHavePurchased(address _user, uint256 _quality) external;

    /// @dev Updates the total cost of player validators for a specific user.
    ///      This function can only be called by a valid Validator contract,
    ///      as ensured by the `onlyValidValidator` modifier.
    /// @param _user The address of the user whose total validator cost is being updated.
    /// @param _cost The cost to be added to the user's total validator cost.
    function _updatePlayerValidatorCost(address _user, uint256 _cost) external;

    /// @notice Retrieves staking information for a specific user.
    /// @param _user The wallet address of the user.
    /// @return amount The total tokens staked by the user.
    /// @return lockStartTime The timestamp when the user's staking lock period began.
    /// @return lockEndTime The timestamp when the user's staking lock period ends.
    /// @return baseReward The current pending base reward for the user.
    /// @return veLRDSBalance The current veLRDS balance of the user.
    /// @return autoMax A boolean indicating if the user has enabled automatic maximum staking.
    /// @return boostReward The current pending boost reward for the user.
    function getUserInfo(address _user) external view returns (uint256 amount, uint256 lockStartTime, uint256 lockEndTime, uint256 baseReward, uint256 veLRDSBalance, bool autoMax, uint256 boostReward);
    
    /// @notice Gets the pending rewards for a user.
    /// @param _userAddress The address of the user to query.
    /// @return The amount of pending rewards for the user.
    function getUserPendingReward(address _userAddress) external view returns (uint256);

    function totalStaked() external view returns (uint256);
    
    /// @notice This function retrieves the staking and reward information for the validator.
    /// @dev It returns details such as the total amount staked, the reward period's start and end times, 
    ///      the total reward available, and whether the reward has been claimed.
    /// @return totalStaked The total amount of tokens staked by the validator.
    /// @return startTime The start time of the current reward period.
    /// @return endTime The end time of the current reward period.
    /// @return totalReward The total reward available for the current reward period.
    /// @return isClaimed A boolean indicating whether the reward has been claimed by the validator.
    /// @return AllocatedValidatorRewards The total reward allocated to the validator during the current period.
    function getValidatorStats() external view returns (uint256 totalStaked, uint256 startTime, uint256 endTime, uint256 totalReward, bool isClaimed, uint256 AllocatedValidatorRewards);
    
    /// @notice Returns the total reward, start time, and end time for the current active boost reward period.
    /// @dev This function uses the `getCurrentBoostPeriod` function to determine the active boost period,
    /// and then retrieves the total reward, start time, and end time for that period.
    function getCurrentBoostReward() external view returns(uint256 totalReward, uint256 startTime, uint256 endTime);
}

// File: contracts/interfaces/IGovernance.sol


pragma solidity ^0.8.28;

interface IGovernance {

    error InvalidWeight();
    error VotingNotOpen();
    error WrongTime();
    error NoVeLRDS();
    error NotValidator();
    error NoSuchOption();
    error ExceedsAvailableWeight();
    error WrongBoostTime();
    error RewardDistributionNotAllowed();
    error NoVotes();
    error WrongStatus();
    error ZeroAddress();
    error ZeroAmount();
    error ProposalHasStakedVotes();
    error UserIsVoted();
    error UserIsNotVoted();
    error RewardAlreadyClaimed();
    error NotAdmin();
    error TimeIsNotUp();
    error RewardIsZero();
    error ZeroVelrds();
    error RewardAlreadyDistributed();
    error InvalidCycle();
    error CycleTooLarge();
    
    event ProposalCreated(uint256 indexed proposalId, uint256 startTime, uint256 endTime, string metadataURI, uint256 totalChoices);
    event Voted(address indexed sender, uint256 proposalId, uint256 choiceIds, uint256 weights);
    event BoostProposalCreated(uint256 indexed proposalId, uint256 startTime, uint256 endTime, uint256 _boostReward, uint256 _boostStartTime, uint256 _boostEndTime, uint256 validatorsNum, address[] indexed validators);
    event BoostRewardDistributed(uint256 indexed proposalId, uint256 indexed totalBoostReward);
    event BoostRewardTransferred(uint256 indexed proposalId,address indexed validator,uint256 rewardAmount);
    event ProposalCancelled(uint256 indexed proposalId);
    event BoostProposalCancelled(uint256 indexed proposalId);
    event RewardsClaimedAndLocked(address indexed sender, uint256 proposalId, uint256 rewardAmount);
    event RewardDistributionExecuted(uint256 indexed proposalId, uint256 totalReward, uint256 timestamp);
    event VotesReset(address indexed sender, uint256 currentCycle);

    /**
    * @dev Resets the votes for a given user. This function will clear all vote-related data for the specified user.
    * This could be used, for example, to allow users to re-cast their votes or to reset their voting status after a certain event.
    * @param _user The address of the user whose votes are to be reset.
    */
    function resetVotes(address _user) external;

    /**
    * @dev Checks if the given proposal ID corresponds to a "boost vote" proposal.
    * A boost vote might refer to a special type of vote, possibly with enhanced or different effects.
    * @param _proposalId The ID of the proposal to be checked.
    * @return bool True if the proposal ID is a boost vote, false otherwise.
    */
    function isBoostVote(uint256 _proposalId) external view returns (bool);

}
// File: contracts/Validator.sol


pragma solidity ^0.8.28;











/// @title Validator Contract
/// @notice This contract allows users to stake tokens, manage reward periods, and claim rewards.
/// @dev The contract uses ERC20 and includes reward management for staked tokens.

contract Validator is IValidator, ReentrancyGuard {
    using SafeERC20 for IERC20;

    // RewardPeriod struct is used to record the details of a reward period
    struct RewardPeriod {
        uint256 startTime;          // The start time of the reward period
        uint256 endTime;            // The end time of the reward period
        uint256 totalReward;        // The total reward amount for this period
        uint256 accTokenPerShare;   // The accumulated tokens per share for this reward period
        uint256 lastRewardTime;     // The last time rewards were distributed
        bool isActive;
    }

    // UserInfo struct is used to store staking information for each user
    struct UserInfo {
        uint256 amount;                  // The amount of tokens the user has staked
        uint256 lockStartTime;           // The start time of the staking lock period
        uint256 lockEndTime;             // The end time of the staking lock period
        uint256 rewardDebt;              // The reward debt, used to calculate the user's reward share
        bool autoMax;                    // Indicates whether the user has enabled automatic maximum staking
    }

    struct BoostReward {
        uint256 startTime;         // The start time of the reward period
        uint256 endTime;           // The end time of the reward period
        uint256 totalReward;       // The total reward amount for this period
        uint256 accTokenPerShare;  // Accumulated reward per share for calculating user entitlements
        uint256 lastUpdatedTime;   // The last update timestamp for this boost period
        bool isActive;
    }

    uint256 public constant DEPOSIT_MAX_FEE = 100;          // The maximum deposit fee (1%)
    uint256 public constant CLAIM_MAX_FEE = 500;            // The maximum claim fee (5%)
    uint256 public constant WEEK = 7 days;                  // One week in seconds
    uint256 public constant MAX_LOCK = 208 * WEEK;          // Maximum lock duration 208 weeks (125798400 seconds)--> main
    uint256 public constant MIN_LOCK = WEEK;                // Minimum lock duration (520 seconds) --> main
    // uint256 public constant MAX_LOCK = 14560;               // Maximum lock duration (14560 seconds) -->test
    // uint256 public constant MIN_LOCK = 520;                 // Minimum lock duration (520 seconds) --> test
    uint256 public constant MULTIPLIER = 10**18;            // The precision factor for reward calculations

    bool public isClaimed;                                  // Flag to indicate whether the validator has been claimed
    bool public isPaused;                                   // Flag to indicate whether the contract is paused

    string public _name;                                    // The name of the validator contract

    uint256 public totalStaked;                             // The total amount of staked tokens
    uint256 public PRECISION_FACTOR;                        // The precision factor for reward calculations
    uint256 public depositFee;                              // The deposit fee percentage
    uint256 public claimFee;                                // The claim fee percentage
    uint256 public validatorId;                             // The unique identifier of the validator
    uint256 public currentRewardPeriodIndex;                // The current reward period index
    uint256 public quality;                                 // The quality level of the validator (e.g., Master, Super, etc.)
    uint256 public currentBoostRewardPeriodIndex;           // The index of the current active boost reward period

    address public token;                                   // The address of LRDS
    /// @inheritdoc IValidator
    address public factory;                                 // The address of the PoolFactory that created this contract
    // address private voter;                               // The address of the voter (for validation purposes)
    address public governance;                             // The address of the governance (for validation purposes)
    address public admin;                                   // The address of the contract admin
    address public owner;                                   // The address of the contract owner
    address public verifier;                                // The address of the verifier for signature verification
    address public masterValidator;                         // The address of the master validator contract

    // Mapping to store reward periods
    mapping(uint256 => RewardPeriod) public rewardPeriods;
    // Mapping to store boost reward periods
    mapping(uint256 => BoostReward) public boostRewards;
    // Mapping to store information about each user who stakes tokens
    mapping(address => UserInfo) public userInfo;

    mapping(address => uint256) public boostRewardDebt;
    // Only one quality Validator can be purchased per player
    mapping(address => mapping(uint256 => bool)) public havePurchased;
    // The amount of Lock used by the player to purchase the Validator
    mapping(address => uint256) public playerValidatorCosts;

    // Modifier to ensure only the admin can access the function
    modifier onlyAdmin() {
        if (msg.sender != address(admin)) revert NotAdmin();
        _;
    }

    // Modifier to ensure only the owner can access the function
    modifier onlyOwner() {
        if (msg.sender != address(owner)) revert NotOwner();
        _;
    }

    // Modifier to ensure the contract is not paused
    modifier whenNotPaused() {
        if (isPaused) revert ContractPaused();
        _;
    }

    // Modifier to ensure only the factory can access the function
    modifier onlyGovernance() {
        if (msg.sender != governance) revert NotGovernance();
        _;
    }

    // Modifier to ensure only the valid validator can access the function
    modifier onlyValidValidator() {
        if (!IValidatorFactory(factory).isValidatorl(address(this))) revert NotValidValidator();
        _;
    }

    constructor() {}

    /// @inheritdoc IValidator
    function initialize(
        address _token,
        address _admin,
        address _owner,
        uint256 _validatorId,
        uint256 _quality,
        address _verifier,
        uint256 _currentQualityCount
    ) external nonReentrant {
        if (factory != address(0)) revert FactoryAlreadySet();
        token = _token;
        factory = msg.sender;
        // voter = IValidatorFactory(factory).voter();
        (admin, owner, validatorId, quality) = (_admin, _owner, _validatorId, _quality);
        if (_quality < 1 || _quality > 7) revert QualityWrong();
        PRECISION_FACTOR = 10 ** 12;

        string[7] memory nodeTypes = [
            "BLOCKLORDS Master",      // index 0, quality 1
            "Super Validator",        // index 1, quality 2
            "Basic Validator",        // index 2, quality 3
            "Special Validator",      // index 3, quality 4
            "Rare Validator",         // index 4, quality 5
            "Epic Validator",         // index 5, quality 6
            "Legendary Validator"     // index 6, quality 7
        ];

        string memory nodeType = nodeTypes[_quality - 1];

        if (_quality == 1) {
            depositFee = 0;
            claimFee   = 0;
            _name      = nodeType;
            isClaimed  = true;
        } else {
            depositFee = 100; // 1%
            claimFee   = 500; // 5%
            _name      = string(abi.encodePacked(nodeType, " ", Strings.toString(_currentQualityCount)));
            isClaimed  = false;
        }
        verifier = _verifier;
        isPaused = false;
    }

    /// @notice Sets a new reward period for staking.
    /// @param _startTime The start time of the reward period (must be in the future).
    /// @param _endTime The end time of the reward period (must be after start time).
    /// @param _totalReward The total amount of reward tokens available for this period.
    /// @dev This function can only be called by the admin.
    function setRewardPeriod(
        uint256 _startTime,
        uint256 _endTime,
        uint256 _totalReward
    ) external nonReentrant onlyAdmin {

        // Check if total reward is greater than 0
        if (_totalReward == 0) revert InvalidTotalReward();

        // If it's the first reward period
        if (currentRewardPeriodIndex == 0) {
            // Start time should be in the future
            if (_startTime <= block.timestamp) revert StartTimeNotInFuture();
            // End time should be after start time
            if (_endTime <= _startTime) revert EndTimeBeforeStartTime();
        } else {
            // For subsequent reward periods, start time should be the end time of the previous period
            RewardPeriod memory previousPeriod = rewardPeriods[currentRewardPeriodIndex - 1];
            if (_startTime <= previousPeriod.endTime) revert StartTimeNotAsExpected();
        }

        rewardPeriods[currentRewardPeriodIndex++] = RewardPeriod({
            startTime: _startTime,
            endTime: _endTime,
            totalReward: _totalReward,
            accTokenPerShare: 0,
            lastRewardTime: _startTime,
            isActive: true
        });
        
        IValidatorFactory(factory).addTotalValidators(_startTime, _endTime, _totalReward);
    }

    /*//////////////////////////////////////////////////////////////
                               VALIDATOR
    //////////////////////////////////////////////////////////////*/

    /// @inheritdoc IValidator
    function createLock(uint256 _amount, uint256 _lockDuration) external nonReentrant whenNotPaused {
        if (_amount == 0) revert ZeroAmount();
        if (_lockDuration == 0 || _lockDuration < MIN_LOCK || _lockDuration > MAX_LOCK) revert WrongDuration();

        UserInfo storage user = userInfo[msg.sender];
        if (user.amount > 0 || user.lockStartTime > 0) revert AllreadyLocked();

        IValidatorFactory(factory).addTotalStakedWallet();

        _deposit(_amount, _lockDuration, msg.sender, false);
    }

    /// @inheritdoc IValidator
    function increaseAmount(uint256 _amount) external nonReentrant whenNotPaused {
        if (_amount == 0) revert ZeroAmount();

        UserInfo storage user = userInfo[msg.sender];
        if (user.amount == 0) revert NoLockCreated();
        if (user.autoMax == false) {
            if (block.timestamp > user.lockEndTime) revert LockTimeExceeded();
        }

        _deposit(_amount, 0, msg.sender, false);
    }

    /// @inheritdoc IValidator
    function extendDuration(uint256 _lockDuration) external nonReentrant whenNotPaused {
        if (_lockDuration == 0 || _lockDuration > MAX_LOCK) revert WrongDuration();

        UserInfo storage user = userInfo[msg.sender];
        if (user.amount == 0) revert NoLockCreated();
        if (user.autoMax == true) revert AutoMaxTime();

        uint256 newEndTime;
        if (block.timestamp > user.lockEndTime) {
            // If lock has already expired, start from current time
            newEndTime = block.timestamp + _lockDuration;
        } else {
            // Otherwise, extend from the current lock end time
            newEndTime = user.lockEndTime + _lockDuration;
        }

        if (newEndTime > block.timestamp + MAX_LOCK) revert GreaterThanMaxTime();
        
        // Reset votes associated with the user
        if (block.timestamp > user.lockEndTime && address(this) == masterValidator) {
            IGovernance(governance).resetVotes(msg.sender);
        }

        _deposit(0, _lockDuration, msg.sender, false);
    }

    /// @inheritdoc IValidator
    function claim() external nonReentrant whenNotPaused {
        UserInfo storage user = userInfo[msg.sender];

        if (user.amount == 0) revert NoLockCreated();

        // Update global reward state and user-specific rewards
        _updateValidator();
        _updateBoostReward();

        // Call _claim to distribute the rewards
        _claim(msg.sender);

        _updateUserDebt(user);
    }

    /// @inheritdoc IValidator
    function withdraw() external nonReentrant whenNotPaused {
        UserInfo storage user = userInfo[msg.sender];

        if (user.amount == 0) revert ZeroAmount();
        if (block.timestamp < user.lockEndTime) revert TimeNotUp();
        if (user.autoMax == true) revert AutoMaxTime();

        // Update global reward state and user-specific rewards
        _updateValidator();
        _updateBoostReward();

        if (IERC20(token).balanceOf(address(this)) < user.amount) revert NotEnoughRewardToken();

        // Call _claim to distribute the rewards
        _claim(msg.sender);

         // Transfer the user's staked amount back to them
        IERC20(token).safeTransfer(msg.sender, user.amount);

        // Reset votes associated with the user
        if (address(this) == masterValidator) {
            IGovernance(governance).resetVotes(msg.sender);
        }

        // Update the global staking total
        totalStaked -= user.amount;

        // Update the total staked amount and wallet count in the factory contract
        IValidatorFactory(factory).subTotalStakedAmount(user.amount);
        IValidatorFactory(factory).subTotalStakedWallet();

        emit Withdraw(msg.sender, user.amount, block.timestamp);
        
        delete userInfo[msg.sender];
        boostRewardDebt[msg.sender] = 0;
    }
    
    /// @inheritdoc IValidator
    function setAutoMax(bool _bool) external nonReentrant whenNotPaused {
        UserInfo storage user = userInfo[msg.sender];
        if (user.amount  == 0) revert NoLockCreated();
        if (user.autoMax == _bool) revert TheSameValue();
        user.autoMax     = _bool;
        user.lockEndTime = block.timestamp + MAX_LOCK;

        emit SetAutoMax(msg.sender, _bool);
    }

    /// @notice Allows a user to purchase a validator by providing a signature and other required parameters.
    /// @dev This function verifies that the provided signature is valid, ensures the user has sufficient funds,
    ///      and that certain conditions are met before claiming the validator.
    /// @param _np The number of validators being purchased (may represent quantity or other related value).
    /// @param _quality The quality level of the validator.
    /// @param _deadline The deadline by which the transaction must be completed, used to prevent replay attacks. uint256 ,
    /// @param _v The recovery byte of the signature.
    /// @param _r The 'r' part of the ECDSA signature.
    /// @param _s The 's' part of the ECDSA signature.
    /// @dev This function ensures that only authorized users can purchase the validator and that they meet
    ///      the necessary requirements for purchasing.
    function purchaseValidator(uint256 _np, uint256 _quality, uint256 _deadline, uint8 _v,  bytes32 _r, bytes32 _s) external nonReentrant whenNotPaused {

        IValidator _masterValidator = IValidator(masterValidator);
        // Check that the deadline has not passed, ensuring the signature is still valid
        if (_deadline < block.timestamp) revert SignatureExpired();

        // Ensure that the number of validators to be purchased is greater than 0
        if (_np == 0) revert InsufficientNPPoint();

        if (_quality != quality) revert QualityWrong();

        // Ensure that the validator has not already been claimed
        if (isClaimed == true) revert ValidatorIsClaimed();

        if (_masterValidator.havePurchased(msg.sender , _quality)) revert AlreadyPurchasedThisQuality();

        // Retrieve the amount of tokens and the auto-max setting from the master validator contract
        (uint256 amount, bool isAutoMax) = _masterValidator.getAmountAndAutoMax(msg.sender);

        // Ensure that auto-max is enabled for the user (this flag must be true to proceed)
        if (isAutoMax == false) revert AutoMaxNotEnabled();

        // Check that the user has staked enough tokens to meet the required minimum amount for the given quality
        uint256 requiredAmount = IValidatorFactory(factory).minAmountForQuality(quality);
        if (requiredAmount == 0) revert ZeroAmount();

        if (amount < (requiredAmount * MULTIPLIER + _masterValidator.playerValidatorCosts(msg.sender))) revert InsufficientLockAmount();

        // Verify the signature by hashing the message and recovering the address
        {
            // Generate the message hash using the parameters
            bytes32 message = keccak256(abi.encodePacked(_np, address(this), _deadline, block.chainid, msg.sender, _quality));
            bytes32 hash = keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", message));
            
            // Recover the address from the signature
            address recover = ecrecover(hash, _v, _r, _s);

            // Ensure the recovered address matches the expected verifier address
            if (recover != verifier) revert VerificationFailed();
        }

        // Mark the validator as claimed and set the owner to the message sender
        isClaimed = true;
        owner = msg.sender;
        _masterValidator._updateHavePurchased(msg.sender, _quality);
        _masterValidator._updatePlayerValidatorCost(msg.sender, requiredAmount * MULTIPLIER);

        // Emit the PurchaseValidator event to notify that the purchase was successful
        emit PurchaseValidator(msg.sender, _np, _quality);
    }

    /// @inheritdoc IValidator
    function getUserPendingReward(address _userAddress) public view returns (uint256) {
        
        UserInfo storage user = userInfo[_userAddress];
        
        uint256 totalPending = 0;

        for (uint256 i = 0; i < currentRewardPeriodIndex; i ++) {
            RewardPeriod memory period = rewardPeriods[i];
            
            if (user.amount == 0 || block.timestamp < period.startTime) {
                break;
            }
            
            uint256 multiplier = _getMultiplier(period.lastRewardTime, block.timestamp, period.endTime);
            uint256 rewardPerSecond = period.totalReward / (period.endTime - period.startTime);
            
            uint256 lrdsReward = multiplier * rewardPerSecond;
            uint256 accTokenPerShare = period.accTokenPerShare + (lrdsReward * PRECISION_FACTOR) / totalStaked;
            uint256 pending = (user.amount * accTokenPerShare) / PRECISION_FACTOR;

            totalPending += pending;
        }

        return totalPending - user.rewardDebt;
    }

    /// @notice Calculates the total rewards for a validator based on the reward periods and current time.
    /// @dev This function iterates through all reward periods and calculates the rewards that have been earned,
    ///      considering the time elapsed in each period. Rewards are calculated based on the proportion of time
    ///      that has passed in each period relative to the total duration of the period.
    /// @return totalRewards The total rewards accumulated by the validator over all reward periods.
    function getValidatorRewards() public view returns (uint256) {
        uint256 totalRewards = 0;

        // Iterate through each reward period and calculate rewards for that period
        for (uint256 i = 0; i < currentRewardPeriodIndex; i++) {
            uint256 period = 0;

            // If the current block timestamp is greater than the reward period's start time
            if (block.timestamp > rewardPeriods[i].startTime) {
                period = block.timestamp - rewardPeriods[i].startTime;

                // Ensure the period doesn't exceed the end time of the reward period
                if (block.timestamp > rewardPeriods[i].endTime) {
                    period = rewardPeriods[i].endTime - rewardPeriods[i].startTime;
                }
            }

            uint256 duration = rewardPeriods[i].endTime - rewardPeriods[i].startTime;

            // Add the reward for this period, proportional to the time spent in the period
            totalRewards += (period * rewardPeriods[i].totalReward) / duration;
        }

        return totalRewards;
    }

    /// @notice Retrieves the amount of staked tokens and the auto-max setting for a user.
    /// @param _userAddress The address of the user whose staking information is to be retrieved.
    /// @return amount The amount of tokens the user has staked.
    /// @return isAutoMax Whether the auto-max feature is enabled for the user.
    function getAmountAndAutoMax(address _userAddress) external view returns (uint256, bool) {
        if (quality == 1) {
            UserInfo storage info = userInfo[_userAddress];
            return (info.amount, info.autoMax);
        } else {
            (uint256 amount, bool isAutoMax) = IValidator(masterValidator).getAmountAndAutoMax(_userAddress);
            return (amount, isAutoMax);
        }
    }

    /// @notice Handles the deposit of staked tokens into the contract for a user.
    /// @dev This function transfers tokens to the contract, applies the deposit fee, updates the user's staking amount,
    ///      and records the lock duration if specified. It also updates the total staked amount in the factory contract.
    /// @param _amount The amount of tokens the user wishes to deposit.
    /// @param _lockDuration The duration for which the tokens will be locked. If set to 0, the tokens will not be locked.
    /// @param _userAddress The user wallet address.
    /// @param _fromBoost Whether the boost reward deposit.
    function _deposit(uint256 _amount, uint256 _lockDuration, address _userAddress, bool _fromBoost) internal {
        UserInfo storage user = userInfo[_userAddress];

        // Update global reward state and user-specific rewards
        _updateValidator();
        _updateBoostReward();

        if (_amount > 0) {

            uint256 amountAfterFee = _amount;
            uint256 fee = 0;

            if (!_fromBoost) {
                // Calculate the deposit fee (depositFee is in basis points, e.g., 500 = 5%)
                fee = (_amount * depositFee) / 10000;

                if (fee > _amount) revert InsufficientAmount();
                amountAfterFee = _amount - fee;
            }
            
            // Call _claim to distribute the rewards
            if (user.amount > 0) {
                _claim(_userAddress);
            }
                
            if (!_fromBoost) {
                // Transfer the staked amount to the contract
                IERC20(token).safeTransferFrom(_userAddress, address(this), amountAfterFee);

                // If there is a fee, transfer it to the owner address
                if (fee > 0) {
                    IERC20(token).safeTransferFrom(_userAddress, owner, fee);
                }
            }

            // Update the user's staked amount
            user.amount  += amountAfterFee;
            totalStaked  += amountAfterFee;

            _updateUserDebt(user);
            _updateUserBoostDebt(_userAddress);


            // If a lock duration is provided, set the lock start and end times
            if (_lockDuration > 0) {
                user.lockStartTime = block.timestamp;
                user.lockEndTime = _lockDuration + block.timestamp;
            }

            // Update the total staked amount in the factory contract
            IValidatorFactory(factory).addTotalStakedAmount(amountAfterFee);
        }

        // If lock duration is provided but no amount is being deposited, just extend the lock duration
        if (_lockDuration > 0 && _amount == 0) {
            user.lockEndTime = block.timestamp < user.lockEndTime ? user.lockEndTime + _lockDuration : block.timestamp + _lockDuration;
        }

        // Emit the Deposit event
        emit Deposit(_userAddress, _amount, user.lockStartTime, _lockDuration, user.lockEndTime, block.timestamp);
    }

    /// @notice Returns the index of the current active reward period based on the current time.
    /// @dev This function checks which reward period is currently active based on the block timestamp.
    function getCurrentPeriod() public view returns(uint256) {
        // If there are no reward periods, return 0
        if (currentRewardPeriodIndex == 0) {
            return 0;
        }
        
        uint256 currentPeriod = 0;

        // Loop through all reward periods and check if the current time is within any of them
        for (uint256 i = 0; i < currentRewardPeriodIndex; i++) {
            RewardPeriod storage period = rewardPeriods[i];
            
            currentPeriod = i;

            // If the current time is within the reward period's valid range (startTime to endTime)
            if (block.timestamp >= period.startTime && block.timestamp <= period.endTime) {
                return i; // Return the index of the active period
            }
        }

        return currentPeriod;
    }

    /// @notice Claims the pending rewards for a user and transfers the reward amount.
    /// @dev This function calculates the pending rewards, applies the claim fee, and transfers the rewards to the user.
    ///      It also transfers the fee portion to the contract owner.
    /// @param _userAddress The user wallet address.
    /// @return userClaimAmount The amount of rewards the user can claim after the fee is deducted.
    /// @return feeAmount The amount of rewards deducted as a fee.
    function _claim(address _userAddress) internal returns (uint256 userClaimAmount, uint256 feeAmount) {
        UserInfo storage user = userInfo[_userAddress];

        uint256 totalPending = _calculateTotalPending(user);
        
        if (totalPending > 0) {

            // Ensure the contract has enough reward tokens to cover the pending claim
            if (IERC20(token).balanceOf(address(this)) < totalPending) revert NotEnoughRewardToken();

            // Calculate the claim fee (claimFee is in basis points, e.g., 300 = 3%)
            feeAmount = (totalPending * claimFee) / 10000;
            userClaimAmount = totalPending - feeAmount;

            // Transfer the fee to the contract owner
            if (feeAmount > 0) {
                IERC20(token).safeTransfer(owner, feeAmount);
            }

            // Transfer the remaining rewards to the user
            IERC20(token).safeTransfer(_userAddress, userClaimAmount);
            
            emit Claim(_userAddress, userClaimAmount, feeAmount);
        }

        uint256 totalBoostPending = _calculateBoostPending(_userAddress);

        if (totalBoostPending > 0) {
            _claimBoostReward(_userAddress, totalBoostPending);
        }
    }

    // /// @notice Calculates the total pending rewards for a user across all eligible reward periods.
    // /// @param _user The UserInfo struct of the user.
    // /// @return totalPending The total amount of pending rewards for the user.
    function _calculateTotalPending(UserInfo storage _user) internal view returns (uint256) {
        
        uint totalPending = 0;

        for (uint256 i = 0; i < currentRewardPeriodIndex; i++) {
            RewardPeriod memory period = rewardPeriods[i];

            if (_user.amount == 0 || block.timestamp < period.startTime) {
                continue;
            }

            uint256 pending = (_user.amount *  period.accTokenPerShare) / PRECISION_FACTOR;

            totalPending += pending;
        }
        
        return totalPending - _user.rewardDebt;
    }

    /// @notice Updates the validator state based on the current time.
    /// @dev This function should be called regularly to ensure accurate reward calculations.
    function _updateValidator() internal{

        // Loop through all reward periods to update rewards for the active periods
        for (uint256 i = 0; i < currentRewardPeriodIndex; i++) {
            RewardPeriod storage period = rewardPeriods[i];

            // Check if the current time is within the valid time range of the reward period
            if (block.timestamp >= period.startTime) {
                // If the current time is earlier than the last reward update time, skip this period
                if (block.timestamp <= period.lastRewardTime) {
                    continue;
                }

                // Calculate the reward for the current period and update the accumulated rewards per share
                if (period.isActive == true) {
                    
                    if (totalStaked > 0) {
                        uint256 lrdsReward = _calculateLrdsReward(i);
                        period.accTokenPerShare += (lrdsReward * PRECISION_FACTOR) / totalStaked;
                    }
                    
                    if (block.timestamp >= period.endTime) {
                        period.isActive = false;
                        period.lastRewardTime = period.endTime;
                    } else {
                        period.lastRewardTime = block.timestamp;
                    }
                }
            }
        }
    }

    /// @notice Updates the user's accumulated rewards across active reward periods.
    /// @param _user The user information struct to be updated.
    function _updateUserDebt(UserInfo storage _user) internal {
        uint256 totalDebt = 0;

        // Loop through each reward period from the user's last updated period to the current
        for (uint256 i = 0; i < currentRewardPeriodIndex; i++) {
            RewardPeriod storage period = rewardPeriods[i];
            
            if (block.timestamp < period.startTime) {
                break;
            }

            totalDebt += (_user.amount * period.accTokenPerShare) / PRECISION_FACTOR;
        }

        _user.rewardDebt = totalDebt;
    }

    /// @notice Calculates the LRDS reward for a given reward period index.
    /// @dev This function calculates the reward based on the elapsed time in the reward period and applies the multiplier.
    ///      The multiplier is derived from the time between the last reward time and the current block timestamp, 
    ///      relative to the reward period's duration.
    /// @param index The index of the reward period for which the reward should be calculated.
    /// @return The amount of LRDS reward for the specified period, considering the elapsed time and multiplier.
    function _calculateLrdsReward(uint256 index) internal view returns (uint256) {
        // Retrieve the details of the reward period at the given index
        RewardPeriod memory period = rewardPeriods[index];

        // Calculate the reward per second for the reward period
        uint256 rewardPerSecond = period.totalReward / (period.endTime - period.startTime);

        // Calculate the multiplier based on the elapsed time since the last reward time
        uint256 multiplier = _getMultiplier(period.lastRewardTime, block.timestamp, period.endTime);

        // Return the calculated reward, applying the multiplier to the reward per second
        return multiplier * rewardPerSecond;
    }

    /// @notice Calculates the multiplier for reward calculation based on the elapsed time in the reward period.
    /// @param start The start time of the reward calculation (e.g., lastRewardTime or period start).
    /// @param end The end time for the reward calculation (e.g., current block timestamp).
    /// @param periodEnd The end time of the reward period being calculated.
    /// @return The multiplier, representing the elapsed time within the period.
    function _getMultiplier(uint256 start, uint256 end, uint256 periodEnd) internal pure returns (uint256) {
        if (end <= start) return 0;
        // Ensures that the calculation does not exceed the reward period's end
        return (end < periodEnd ? end : periodEnd) - start;
    }

    /// @inheritdoc IValidator
    function _updateHavePurchased(address _user, uint256 _quality) external onlyValidValidator {
        havePurchased[_user][_quality] = true;
    }

    /// @inheritdoc IValidator
    function _updatePlayerValidatorCost(address _user, uint256 _cost) external onlyValidValidator {
        playerValidatorCosts[_user] += _cost;
    }

    /// @inheritdoc IValidator
    function getUserInfo(address _user) external view returns (
        uint256 amount,
        uint256 lockStartTime,  
        uint256 lockEndTime,  
        uint256 baseReward, 
        uint256 veLRDSBalance, 
        bool autoMax,
        uint256 boostReward) 
    {  
        // Retrieve the user's staking information
        UserInfo memory user = userInfo[_user];

        // Get the current base reward of the user
        uint256 currentBaseReward = getUserPendingReward(_user);

        // Get the current veLRDS balance of the user
        uint256 currentVeLRDSBalance = veLrdsBalance(_user);

        uint256 currentBoostReward = getUserBoostReward(_user);

        // Return all relevant data
        return ( user.amount, user.lockStartTime, user.lockEndTime, currentBaseReward, currentVeLRDSBalance, user.autoMax, currentBoostReward);
    }

    /// @inheritdoc IValidator
    function getValidatorStats() external view  returns (
        uint256 _totalStaked,  
        uint256 _currentRewardStartTime,  
        uint256 _currentRewardEndTime,  
        uint256 _currentRewardTotal, 
        bool _isClaimed, 
        uint256 _AllocatedValidatorRewards) 
    {
        
        // Retrieve the total staked amount
        _totalStaked = totalStaked;

        // Get the current reward period index
        uint256 currentPeriodIndex = getCurrentPeriod();

        uint256 getAllocatedValidatorRewards = getValidatorRewards();

        // Fetch the details of the current reward period
        RewardPeriod memory currentPeriod = rewardPeriods[currentPeriodIndex];
        _currentRewardStartTime     = currentPeriod.startTime;
        _currentRewardEndTime       = currentPeriod.endTime;
        _currentRewardTotal         = currentPeriod.totalReward;
        _isClaimed                  = isClaimed;
        _AllocatedValidatorRewards  = getAllocatedValidatorRewards;

        
        // Return all relevant data
        return (totalStaked, _currentRewardStartTime, _currentRewardEndTime, _currentRewardTotal, _isClaimed, _AllocatedValidatorRewards);
    }


    /*//////////////////////////////////////////////////////////////
                               GOVERNANCE
    //////////////////////////////////////////////////////////////*/

    /// @notice Return the voting weight of a givne user
    /// @param _user The address of a user
    function veLrdsBalance(address _user) public view returns (uint256) {
         UserInfo storage user = userInfo[_user];

        // If user has no amount staked or if not the master validator, return 0
        if (user.amount == 0 || quality != 1) return 0;

        // Determine the effective lock end time
        uint256 effectiveLockEndTime = user.autoMax ? block.timestamp + MAX_LOCK : user.lockEndTime;

        // Ensure the lock period has not expired
        if (block.timestamp >= effectiveLockEndTime) return 0;

        // Calculate the duration remaining until the effective lock end time
        uint256 duration = effectiveLockEndTime - block.timestamp;

        // Calculate veLrds based on remaining lock duration
        uint256 veLrds = (user.amount * duration) / MAX_LOCK;

        return veLrds;
    }

    /// @inheritdoc IValidator
    function stakeFor(address _user, uint256 _amount, bool _fromBoost) external onlyGovernance {
        // Increase the user's staked amount
        UserInfo storage user = userInfo[_user];
        if (user.amount == 0 ) revert NoLockCreated(); 
        
        if (user.autoMax == false) {
            if (block.timestamp > user.lockEndTime) revert LockTimeExceeded();
        }

        _deposit(_amount, 0, _user, _fromBoost);

        emit StakeForUser(_user, _amount);
    }

    /**
     * @dev Adds a new boost reward period.
     * @param _startTime The start time of the boost reward period.
     * @param _endTime The end time of the boost reward period.
     * @param _totalReward The total reward allocated for this boost period.
     */
    function addBoostReward(uint256 _startTime, uint256 _endTime, uint256 _totalReward) external onlyGovernance {

        boostRewards[currentBoostRewardPeriodIndex++] = BoostReward({
            startTime: _startTime,
            endTime: _endTime,
            totalReward: _totalReward,
            accTokenPerShare: 0,
            lastUpdatedTime: _startTime,
            isActive: true
        });

        emit BoostRewardAdded(_startTime, _endTime, _totalReward);
    }

     /**
     * @dev Allows users to claim accumulated boost rewards.
     * Claims all pending rewards from all unclaimed boost periods and transfers them to the user.
     * The function updates the claimed amount within each boost period and adjusts the user's reward debt.
    /// @param _userAddress The user wallet address.
     * @param _totalBoostPending The amount of the boost reward period.
     */
    function _claimBoostReward(address _userAddress, uint256 _totalBoostPending) internal whenNotPaused {

        // Transfer the total pending boost reward to the user
        IERC20(token).safeTransfer(_userAddress, _totalBoostPending);
        
        _updateUserBoostDebt(_userAddress);

        emit BoostRewardClaimed(_userAddress, _totalBoostPending);
    }
    
    /// @notice Updates the user's accumulated rewards across boost reward periods.
    /// @param _userAddress The user information struct to be updated.
    function _updateUserBoostDebt(address _userAddress) internal {
        UserInfo storage user = userInfo[_userAddress];
       
        uint256 totalBoostDebt = 0;

        // Loop through each reward period from the user's last updated period to the current
        for (uint256 i = 0; i < currentBoostRewardPeriodIndex; i++) {
            BoostReward storage boost = boostRewards[i];

            if (block.timestamp < boost.startTime) {
                break;
            }

            totalBoostDebt += (user.amount * boost.accTokenPerShare) / PRECISION_FACTOR;
        }

        boostRewardDebt[_userAddress] = totalBoostDebt; 
    }

    /**
     * @dev Updates the boost reward state for a specific boost period.
     * Calculates and updates the accumulated rewards (accTokenPerShare) since the last update.
     */
    function _updateBoostReward() internal {

        // Loop through all reward periods to update rewards for the active periods
        for (uint256 i = 0; i < currentBoostRewardPeriodIndex; i++) {
            BoostReward storage boost = boostRewards[i];

            // Check if the current time is within the valid time range of the reward period
            if (block.timestamp >= boost.startTime) {
                // If the current time is earlier than the last reward update time, skip this period
                if (block.timestamp <= boost.lastUpdatedTime) {
                    continue;
                }

                // Calculate the reward for the current period and update the accumulated rewards per share
                if (boost.isActive == true) {
                    
                    if (totalStaked > 0) {
                        uint256 boostReward = _calculateBoostReward(i);
                        boost.accTokenPerShare += (boostReward * PRECISION_FACTOR) / totalStaked;
                    }
                    
                    if (block.timestamp >= boost.endTime) {
                        boost.isActive = false;
                        boost.lastUpdatedTime = boost.endTime;
                    } else {
                        boost.lastUpdatedTime = block.timestamp;
                    }
                }
            }
        }
    }

     /**
     * @dev Calculates the pending boost reward for a user in a specified boost period.
     * @param _boostIndex The index of the boost period for which to calculate pending rewards.
     * @return The pending reward amount for the user in the specified boost period.
     */
    function _calculateBoostReward(uint256 _boostIndex) internal view returns (uint256) {
        BoostReward memory boost = boostRewards[_boostIndex];

        // Calculate the reward per second for the boost reward period
        uint256 boostRewardPerSecond = boost.totalReward / (boost.endTime - boost.startTime);

        // Calculate the multiplier based on the elapsed time since the last reward time
        uint256 multiplier = _getMultiplier(boost.lastUpdatedTime, block.timestamp, boost.endTime);

        // Return the calculated reward, applying the multiplier to the reward per second
        return multiplier * boostRewardPerSecond;
    }

    // /// @notice Calculates the total boost pending rewards for a user across all eligible reward periods.
    // /// @param _userAddress The user wallet address.
    // /// @return totalBoostPending The total amount of boost pending rewards for the user.
    function _calculateBoostPending(address _userAddress) internal view returns (uint256) {
        UserInfo storage user = userInfo[_userAddress];
        
        uint totalBoostPending = 0;

        // Loop through each reward period from last updated period to the current
        for (uint256 i = 0; i < currentBoostRewardPeriodIndex; i++) {
            BoostReward memory boost = boostRewards[i];

            if (user.amount == 0 || block.timestamp < boost.startTime) continue;

            totalBoostPending += (user.amount *  boost.accTokenPerShare) / PRECISION_FACTOR;
        }

        return totalBoostPending - boostRewardDebt[_userAddress];
    }

    /**
     * @dev Retrieves the total pending boost reward for a user across all unclaimed boost periods.
     * @param _userAddress The address of the user.
     * @return The total pending boost reward for the specified user.
     */
    function getUserBoostReward(address _userAddress) public view returns (uint256) {
        
        UserInfo storage user = userInfo[_userAddress];
        
        uint256 totalBoostPending = 0;

        for (uint256 i = 0; i < currentBoostRewardPeriodIndex; i++) {
            BoostReward memory boost = boostRewards[i];

            if (user.amount == 0 || block.timestamp < boost.startTime) {
                continue;
            }
            
            uint256 multiplier = _getMultiplier(boost.lastUpdatedTime, block.timestamp, boost.endTime);
            uint256 rewardPerSecond = boost.totalReward / (boost.endTime - boost.startTime);
            
            uint256 boostReward = multiplier * rewardPerSecond;
            uint256 accTokenPerShare = boost.accTokenPerShare + (boostReward * PRECISION_FACTOR) / totalStaked;
            uint256 pending = (user.amount * accTokenPerShare) / PRECISION_FACTOR;

            totalBoostPending += pending;
        }

        return totalBoostPending - boostRewardDebt[_userAddress];
    }

    /// @notice Returns the index of the current active boost reward period based on the current time.
    /// @dev This function checks which boost reward period is currently active based on the block timestamp.
    function getCurrentBoostPeriod() public view returns(uint256) {
        // If there are no boost periods, return 0
        if (currentBoostRewardPeriodIndex == 0) {
            return 0;
        }

        uint256 currentBoostPeriod = 0;

        // Loop through all boost periods and check if the current time is within any of them
        for (uint256 i = 0; i < currentBoostRewardPeriodIndex; i++) {
            BoostReward storage period = boostRewards[i];
            
            currentBoostPeriod = i;

            // If the current time is within the boost period's valid range (startTime to endTime)
            if (block.timestamp >= period.startTime && block.timestamp <= period.endTime && period.isActive) {
                return i; // Return the index of the active boost period
            }
        }

        return currentBoostPeriod;
    }

    
    /// @inheritdoc IValidator
    function getCurrentBoostReward() external view returns(uint256 totalReward, uint256 startTime, uint256 endTime) {
        uint256 currentBoostPeriodIndex = getCurrentBoostPeriod();

        // Get the boost reward info
        BoostReward memory currentBoostPeriod = boostRewards[currentBoostPeriodIndex];
        
        return (currentBoostPeriod.totalReward, currentBoostPeriod.startTime,currentBoostPeriod.endTime);
    }

    /*//////////////////////////////////////////////////////////////
                               OWNER
    //////////////////////////////////////////////////////////////*/

    /// @notice Sets the deposit fee for the contract.
    /// @param _fee The new fee percentage to set.
    /// @dev Only the owner can call this function.
    function setDepositFee(uint256 _fee) external nonReentrant whenNotPaused onlyOwner {
        if (_fee > DEPOSIT_MAX_FEE) revert FeeTooHigh();
        depositFee = _fee;

        emit SetDepositFee(msg.sender, _fee);
    }

    // @notice Sets the claim fee for the contract.
    /// @param _fee The new fee percentage to set.
    /// @dev Only the owner can call this function.
    function setClaimFee(uint256 _fee) external nonReentrant whenNotPaused onlyOwner {
        if (_fee > CLAIM_MAX_FEE) revert FeeTooHigh();
        claimFee = _fee;

        emit SetClaimFee(msg.sender, _fee);
    }
    
    /*//////////////////////////////////////////////////////////////
                               ADMIN
    //////////////////////////////////////////////////////////////*/
    
    /// @notice Sets a new name for the validator.
    /// @param _newName The new name to set.
    /// @dev Only the admin can call this function.
    function setName(string calldata _newName) external onlyAdmin {
        _name = _newName;
    }

    /**
     * @dev Sets the address of the verifier for signature verification.
     * @param _verifier The address of the verifier contract.
     */
    function setVerifier(address _verifier) external onlyAdmin {
        if (_verifier == address(0)) revert ZeroAddress();
        verifier = _verifier;
    }
    
    /// @notice Sets the address of the master validator.
    /// @dev This function allows the admin to set or update the master validator address.
    ///      The new address must be non-zero to ensure valid assignments.
    /// @param _validator The address of the new master validator.
    function setMasterValidator(address _validator) external onlyAdmin {
        // Ensure the provided address is not zero
        if (_validator == address(0)) revert ZeroAddress();
        
        // Set the master validator address
        masterValidator = _validator;
    }

    /// @notice Sets the address of the governance.
    /// @dev This function allows the admin to set or update the governance address.
    ///      The new address must be non-zero to ensure valid assignments.
    /// @param _governance The address of the new governance.
    function setGovernance(address _governance) external onlyAdmin {
        // Ensure the provided address is not zero
        if (_governance == address(0)) revert ZeroAddress();
        
        // Set the governance address
        governance = _governance;
    }

    /**
    * @dev Allows the contract admin to pause or unpause the contract.
    * Only the admin can call this function to change the contract's paused status.
    * If the contract is already in the desired state, it will revert with `TheSameValue` error.
    *
    * @param _paused A boolean value indicating whether to pause (true) or unpause (false) the contract.
    */
    function setPause(bool _paused) external onlyAdmin {
        // If the new paused status is the same as the current one, revert the transaction
        if (_paused == isPaused) revert TheSameValue();

        // Update the paused status to the new value
        isPaused = _paused;
    }

    /// @notice This function allows the admin to change the owner of a Validator with quality 2 (non-sellable).
    /// @dev Only the admin can call this function, and it applies to Validators with quality 2 (Super Validators).
    /// @param _newOwner The new owner address for the Validator.
    function changeValidatorOwner(address _newOwner) external onlyAdmin {

        // Ensure that the Validator's quality is 2 (Super Validator)
        if (quality != 2) revert NotSuperValidator();

        isClaimed  = true;

        // Update the owner to the new address
        owner = _newOwner;

        emit ValidatorOwnerChanged(_newOwner);
    }

    /**
     * @dev Sets the address of the new owner.
     * This function can only be called by the current admin.
     * Once executed, the specified address will be set as the owner of the contract.
     * 
     * @param _newOwner The address of the new owner.
     */
    function setOwner(address _newOwner) external onlyAdmin {
        if (_newOwner != address(0)) revert ZeroAddress();
        owner = _newOwner;
    }

    /**
     * @dev Sets the address of the new admin.
     * This function can only be called by the current admin.
     * Once executed, the specified address will be set as the admin of the contract.
     * 
     * @param _newAdmin The address of the new admin.
     */
    function setAdmin(address _newAdmin) external onlyAdmin {
        if (_newAdmin != address(0)) revert ZeroAddress();
        admin = _newAdmin;
    }
}

Contract ABI

API
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AllreadyLocked","type":"error"},{"inputs":[],"name":"AlreadyPurchasedThisQuality","type":"error"},{"inputs":[],"name":"AutoMaxNotEnabled","type":"error"},{"inputs":[],"name":"AutoMaxTime","type":"error"},{"inputs":[],"name":"ContractPaused","type":"error"},{"inputs":[],"name":"EndTimeBeforeStartTime","type":"error"},{"inputs":[],"name":"FactoryAlreadySet","type":"error"},{"inputs":[],"name":"FeeTooHigh","type":"error"},{"inputs":[],"name":"GreaterThanMaxTime","type":"error"},{"inputs":[],"name":"InsufficientAmount","type":"error"},{"inputs":[],"name":"InsufficientLockAmount","type":"error"},{"inputs":[],"name":"InsufficientNPPoint","type":"error"},{"inputs":[],"name":"InvalidBoostReward","type":"error"},{"inputs":[],"name":"InvalidTotalReward","type":"error"},{"inputs":[],"name":"LockTimeExceeded","type":"error"},{"inputs":[],"name":"NoLockCreated","type":"error"},{"inputs":[],"name":"NoReward","type":"error"},{"inputs":[],"name":"NotAdmin","type":"error"},{"inputs":[],"name":"NotEnoughRewardToken","type":"error"},{"inputs":[],"name":"NotEnoughStakeToken","type":"error"},{"inputs":[],"name":"NotFactory","type":"error"},{"inputs":[],"name":"NotGovernance","type":"error"},{"inputs":[],"name":"NotOwner","type":"error"},{"inputs":[],"name":"NotSuperValidator","type":"error"},{"inputs":[],"name":"NotValidValidator","type":"error"},{"inputs":[],"name":"QualityWrong","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"SignatureExpired","type":"error"},{"inputs":[],"name":"StartTimeNotAsExpected","type":"error"},{"inputs":[],"name":"StartTimeNotInFuture","type":"error"},{"inputs":[],"name":"StateUnchanged","type":"error"},{"inputs":[],"name":"TheSameValue","type":"error"},{"inputs":[],"name":"TimeNotUp","type":"error"},{"inputs":[],"name":"ValidatorIsClaimed","type":"error"},{"inputs":[],"name":"VerificationFailed","type":"error"},{"inputs":[],"name":"WrongDuration","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"inputs":[],"name":"ZeroAmount","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"startTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalReward","type":"uint256"}],"name":"BoostRewardAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"pendingBoostReward","type":"uint256"}],"name":"BoostRewardClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"userClaimAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"feeAmount","type":"uint256"}],"name":"Claim","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ClaimFees","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"startTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"duration","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"time","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"NP","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"quality","type":"uint256"}],"name":"PurchaseValidator","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"bool","name":"open","type":"bool"}],"name":"SetAutoMax","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"fee","type":"uint256"}],"name":"SetClaimFee","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"fee","type":"uint256"}],"name":"SetDepositFee","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"StakeForUser","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"ValidatorOwnerChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"time","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"CLAIM_MAX_FEE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEPOSIT_MAX_FEE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_LOCK","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_LOCK","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MULTIPLIER","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRECISION_FACTOR","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WEEK","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"},{"internalType":"uint256","name":"_quality","type":"uint256"}],"name":"_updateHavePurchased","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"},{"internalType":"uint256","name":"_cost","type":"uint256"}],"name":"_updatePlayerValidatorCost","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_startTime","type":"uint256"},{"internalType":"uint256","name":"_endTime","type":"uint256"},{"internalType":"uint256","name":"_totalReward","type":"uint256"}],"name":"addBoostReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"admin","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"boostRewardDebt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"boostRewards","outputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"totalReward","type":"uint256"},{"internalType":"uint256","name":"accTokenPerShare","type":"uint256"},{"internalType":"uint256","name":"lastUpdatedTime","type":"uint256"},{"internalType":"bool","name":"isActive","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_newOwner","type":"address"}],"name":"changeValidatorOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_lockDuration","type":"uint256"}],"name":"createLock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"currentBoostRewardPeriodIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currentRewardPeriodIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"depositFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_lockDuration","type":"uint256"}],"name":"extendDuration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_userAddress","type":"address"}],"name":"getAmountAndAutoMax","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentBoostPeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentBoostReward","outputs":[{"internalType":"uint256","name":"totalReward","type":"uint256"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentPeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_userAddress","type":"address"}],"name":"getUserBoostReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"getUserInfo","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"lockStartTime","type":"uint256"},{"internalType":"uint256","name":"lockEndTime","type":"uint256"},{"internalType":"uint256","name":"baseReward","type":"uint256"},{"internalType":"uint256","name":"veLRDSBalance","type":"uint256"},{"internalType":"bool","name":"autoMax","type":"bool"},{"internalType":"uint256","name":"boostReward","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_userAddress","type":"address"}],"name":"getUserPendingReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getValidatorRewards","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getValidatorStats","outputs":[{"internalType":"uint256","name":"_totalStaked","type":"uint256"},{"internalType":"uint256","name":"_currentRewardStartTime","type":"uint256"},{"internalType":"uint256","name":"_currentRewardEndTime","type":"uint256"},{"internalType":"uint256","name":"_currentRewardTotal","type":"uint256"},{"internalType":"bool","name":"_isClaimed","type":"bool"},{"internalType":"uint256","name":"_AllocatedValidatorRewards","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"governance","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"havePurchased","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"increaseAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_admin","type":"address"},{"internalType":"address","name":"_owner","type":"address"},{"internalType":"uint256","name":"_validatorId","type":"uint256"},{"internalType":"uint256","name":"_quality","type":"uint256"},{"internalType":"address","name":"_verifier","type":"address"},{"internalType":"uint256","name":"_currentQualityCount","type":"uint256"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"masterValidator","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"playerValidatorCosts","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_np","type":"uint256"},{"internalType":"uint256","name":"_quality","type":"uint256"},{"internalType":"uint256","name":"_deadline","type":"uint256"},{"internalType":"uint8","name":"_v","type":"uint8"},{"internalType":"bytes32","name":"_r","type":"bytes32"},{"internalType":"bytes32","name":"_s","type":"bytes32"}],"name":"purchaseValidator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"quality","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rewardPeriods","outputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"totalReward","type":"uint256"},{"internalType":"uint256","name":"accTokenPerShare","type":"uint256"},{"internalType":"uint256","name":"lastRewardTime","type":"uint256"},{"internalType":"bool","name":"isActive","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_newAdmin","type":"address"}],"name":"setAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_bool","type":"bool"}],"name":"setAutoMax","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_fee","type":"uint256"}],"name":"setClaimFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_fee","type":"uint256"}],"name":"setDepositFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_governance","type":"address"}],"name":"setGovernance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_validator","type":"address"}],"name":"setMasterValidator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_newName","type":"string"}],"name":"setName","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newOwner","type":"address"}],"name":"setOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_paused","type":"bool"}],"name":"setPause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_startTime","type":"uint256"},{"internalType":"uint256","name":"_endTime","type":"uint256"},{"internalType":"uint256","name":"_totalReward","type":"uint256"}],"name":"setRewardPeriod","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_verifier","type":"address"}],"name":"setVerifier","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bool","name":"_fromBoost","type":"bool"}],"name":"stakeFor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalStaked","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userInfo","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"lockStartTime","type":"uint256"},{"internalType":"uint256","name":"lockEndTime","type":"uint256"},{"internalType":"uint256","name":"rewardDebt","type":"uint256"},{"internalType":"bool","name":"autoMax","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"validatorId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"veLrdsBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"verifier","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.