More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 374 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Claim | 29274787 | 18 hrs ago | IN | 0 ETH | 0.00000042 | ||||
Claim | 29256524 | 28 hrs ago | IN | 0 ETH | 0.00000021 | ||||
Increase Amount | 29232001 | 42 hrs ago | IN | 0 ETH | 0.00000051 | ||||
Claim | 29225466 | 46 hrs ago | IN | 0 ETH | 0.00000023 | ||||
Claim | 29213513 | 2 days ago | IN | 0 ETH | 0.00000026 | ||||
Claim | 29207317 | 2 days ago | IN | 0 ETH | 0.00000033 | ||||
Claim | 29175041 | 3 days ago | IN | 0 ETH | 0.00000026 | ||||
Claim | 29169030 | 3 days ago | IN | 0 ETH | 0.00000033 | ||||
Claim | 29161123 | 3 days ago | IN | 0 ETH | 0.00000012 | ||||
Claim | 29147307 | 3 days ago | IN | 0 ETH | 0.00000023 | ||||
Increase Amount | 29102712 | 4 days ago | IN | 0 ETH | 0.00000026 | ||||
Claim | 29102145 | 4 days ago | IN | 0 ETH | 0.00000019 | ||||
Claim | 29041479 | 6 days ago | IN | 0 ETH | 0.00000138 | ||||
Increase Amount | 29007353 | 6 days ago | IN | 0 ETH | 0.0000003 | ||||
Claim | 28995728 | 7 days ago | IN | 0 ETH | 0.00000021 | ||||
Extend Duration | 28994586 | 7 days ago | IN | 0 ETH | 0.00000015 | ||||
Claim | 28994578 | 7 days ago | IN | 0 ETH | 0.00000021 | ||||
Create Lock | 28978485 | 7 days ago | IN | 0 ETH | 0.00000062 | ||||
Withdraw | 28978470 | 7 days ago | IN | 0 ETH | 0.00000043 | ||||
Claim | 28956141 | 8 days ago | IN | 0 ETH | 0.00000023 | ||||
Claim | 28953992 | 8 days ago | IN | 0 ETH | 0.00000019 | ||||
Claim | 28950294 | 8 days ago | IN | 0 ETH | 0.00000025 | ||||
Extend Duration | 28929707 | 8 days ago | IN | 0 ETH | 0.00000052 | ||||
Increase Amount | 28912543 | 9 days ago | IN | 0 ETH | 0.00000029 | ||||
Claim | 28908761 | 9 days ago | IN | 0 ETH | 0.00000021 |
Latest 1 internal transaction
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
22994766 | 146 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Minimal Proxy Contract for 0xde6aa84fdf18479a605a6c3445f3d725c14ea533
Contract Name:
Validator
Compiler Version
v0.8.28+commit.7893614a
Contract Source Code (Solidity)
/** *Submitted for verification at basescan.org on 2024-11-28 */ // File: @openzeppelin/contracts/utils/Panic.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } } // File: @openzeppelin/contracts/utils/math/SafeCast.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } } // File: @openzeppelin/contracts/utils/math/Math.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } } // File: @openzeppelin/contracts/token/ERC20/IERC20.sol // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); } // File: @openzeppelin/contracts/interfaces/IERC20.sol // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; // File: @openzeppelin/contracts/utils/introspection/IERC165.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // File: @openzeppelin/contracts/interfaces/IERC165.sol // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; // File: @openzeppelin/contracts/interfaces/IERC1363.sol // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol) pragma solidity ^0.8.20; /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); } // File: @openzeppelin/contracts/utils/Errors.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol) pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. * * _Available since v5.1._ */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); /** * @dev A necessary precompile is missing. */ error MissingPrecompile(address); } // File: @openzeppelin/contracts/utils/Address.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert Errors.InsufficientBalance(address(this).balance, amount); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert Errors.FailedCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {Errors.FailedCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case * of an unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {Errors.FailedCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly ("memory-safe") { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert Errors.FailedCall(); } } } // File: @openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. * * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being * set here. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements. */ function _callOptionalReturn(IERC20 token, bytes memory data) private { uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) // bubble errors if iszero(success) { let ptr := mload(0x40) returndatacopy(ptr, 0, returndatasize()) revert(ptr, returndatasize()) } returnSize := returndatasize() returnValue := mload(0) } if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { bool success; uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) returnSize := returndatasize() returnValue := mload(0) } return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1); } } // File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } // File: @openzeppelin/contracts/utils/Context.sol // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } } // File: @openzeppelin/contracts/interfaces/draft-IERC6093.sol // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); } // File: @openzeppelin/contracts/token/ERC20/ERC20.sol // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC-20 * applications. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Skips emitting an {Approval} event indicating an allowance update. This is not * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve]. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * * ```solidity * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } } // File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612]. * * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // File: @openzeppelin/contracts/utils/cryptography/ECDSA.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover( bytes32 hash, bytes memory signature ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly ("memory-safe") { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures] */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } } // File: @openzeppelin/contracts/utils/math/SignedMath.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } } // File: @openzeppelin/contracts/utils/Strings.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol) pragma solidity ^0.8.20; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } } // File: @openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } } // File: @openzeppelin/contracts/utils/StorageSlot.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC-1967 implementation slot: * ```solidity * contract ERC1967 { * // Define the slot. Alternatively, use the SlotDerivation library to derive the slot. * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * TIP: Consider using this library along with {SlotDerivation}. */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct Int256Slot { int256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Int256Slot` with member `value` located at `slot`. */ function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } /** * @dev Returns a `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } } // File: @openzeppelin/contracts/utils/ShortStrings.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol) pragma solidity ^0.8.20; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); assembly ("memory-safe") { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using * {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } } // File: @openzeppelin/contracts/interfaces/IERC5267.sol // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.20; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); } // File: @openzeppelin/contracts/utils/cryptography/EIP712.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.20; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data. * * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * @custom:oz-upgrades-unsafe-allow state-variable-immutable */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC-5267}. */ function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0), new uint256[](0) ); } /** * @dev The name parameter for the EIP712 domain. * * NOTE: By default this function reads _name which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Name() internal view returns (string memory) { return _name.toStringWithFallback(_nameFallback); } /** * @dev The version parameter for the EIP712 domain. * * NOTE: By default this function reads _version which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Version() internal view returns (string memory) { return _version.toStringWithFallback(_versionFallback); } } // File: @openzeppelin/contracts/utils/Nonces.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol) pragma solidity ^0.8.20; /** * @dev Provides tracking nonces for addresses. Nonces will only increment. */ abstract contract Nonces { /** * @dev The nonce used for an `account` is not the expected current nonce. */ error InvalidAccountNonce(address account, uint256 currentNonce); mapping(address account => uint256) private _nonces; /** * @dev Returns the next unused nonce for an address. */ function nonces(address owner) public view virtual returns (uint256) { return _nonces[owner]; } /** * @dev Consumes a nonce. * * Returns the current value and increments nonce. */ function _useNonce(address owner) internal virtual returns (uint256) { // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be // decremented or reset. This guarantees that the nonce never overflows. unchecked { // It is important to do x++ and not ++x here. return _nonces[owner]++; } } /** * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`. */ function _useCheckedNonce(address owner, uint256 nonce) internal virtual { uint256 current = _useNonce(owner); if (nonce != current) { revert InvalidAccountNonce(owner, current); } } } // File: @openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612]. * * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces { bytes32 private constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Permit deadline has expired. */ error ERC2612ExpiredSignature(uint256 deadline); /** * @dev Mismatched signature. */ error ERC2612InvalidSigner(address signer, address owner); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC-20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @inheritdoc IERC20Permit */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { if (block.timestamp > deadline) { revert ERC2612ExpiredSignature(deadline); } bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, v, r, s); if (signer != owner) { revert ERC2612InvalidSigner(signer, owner); } _approve(owner, spender, value); } /** * @inheritdoc IERC20Permit */ function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) { return super.nonces(owner); } /** * @inheritdoc IERC20Permit */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view virtual returns (bytes32) { return _domainSeparatorV4(); } } // File: @openzeppelin/contracts/utils/ReentrancyGuard.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at, * consider using {ReentrancyGuardTransient} instead. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } } // File: contracts/interfaces/IValidatorFactory.sol pragma solidity ^0.8.28; interface IValidatorFactory { error NotAdmin(); error PoolAlreadyExists(); error ZeroAddress(); error NotEnoughAmount(); error NotEnoughWallet(); error NotRegisteredValidator(); error InvalidTimePeriod(); error PageOutOfBounds(); event ValidatorCreated(address indexed owner, address validator, uint256 validatorLength); /// @notice Returns the total number of validators in the system. /// @dev This function provides the length of the validator list, indicating how many validators exist in the contract. /// @return uint256 The total number of validators. function allValidatorsLength() external view returns (uint256); /// @notice Checks if the provided address is a registered validator. /// @dev This function is used to verify if an address is recognized as a validator in the system. /// @param validator The address to check. /// @return bool True if the address is a validator, false otherwise. function isValidatorl(address validator) external view returns (bool); /// @notice Creates a new validator for a given owner, quality, and verifier. /// @dev This function is used to create a new validator, initializing it with the provided token address, owner address, and quality level. /// @param _token The address of the LRDS. /// @param _owner The address of the validator's owner. /// @param _quality The quality level of the new validator. /// @param _verifier The address of the verifier. /// @return validator The address of the newly created validator. function createValidator(address _token, address _owner, uint256 _quality, address _verifier) external returns (address validator); /// @notice Increases the total staked amount by the specified amount. /// @dev This function is used to add a specified amount to the total staked amount across the system. /// @param _amount The amount to increase the total staked amount by. function addTotalStakedAmount(uint256 _amount) external; /// @notice Decreases the total staked amount by the specified amount. /// @dev This function is used to subtract a specified amount from the total staked amount across the system. /// @param _amount The amount to decrease the total staked amount by. function subTotalStakedAmount(uint256 _amount) external; /// @notice Increases the total number of staked wallets. /// @dev This function is used to increase the number of wallets that have staked tokens in the system. function addTotalStakedWallet() external; /// @notice Decreases the total number of staked wallets. /// @dev This function is used to decrease the number of wallets that have staked tokens in the system. function subTotalStakedWallet() external; /// @notice Adds a new validator to the total validators list with the specified reward parameters. /// @dev This function is used to register a new validator to the system with the total reward parameters, including the start and end time for the reward period. /// @param _startTime The start time of the reward period for the new validator. /// @param _endTime The end time of the reward period for the new validator. /// @param _totalReward The total reward allocated to the new validator for the reward period. function addTotalValidators(uint256 _startTime, uint256 _endTime, uint256 _totalReward) external; /// @notice Returns the minimum amount required for a given quality level of validator. /// @dev This function is used to determine the minimum staked amount required for a validator of a certain quality level. /// @param quality The quality level of the validator. /// @return uint256 The minimum amount required for the specified quality level. function minAmountForQuality(uint256 quality) external returns (uint256); /// @notice Returns an array of all validator addresses in the system. /// @dev This function is used to retrieve all validator addresses, providing a complete list of validators in the system. /// @return address[] The list of all validator addresses. function getValidators() external view returns (address[] memory); } // File: contracts/interfaces/IValidator.sol pragma solidity ^0.8.28; interface IValidator { error NotAdmin(); error NotOwner(); error NotFactory(); error NotGovernance(); error FeeTooHigh(); error ZeroAmount(); error AllreadyLocked(); error NoLockCreated(); error InsufficientAmount(); error TimeNotUp(); error NotEnoughStakeToken(); error NotEnoughRewardToken(); error FactoryAlreadySet(); error InvalidTotalReward(); error StartTimeNotInFuture(); error EndTimeBeforeStartTime(); error StartTimeNotAsExpected(); error TheSameValue(); error AutoMaxTime(); error QualityWrong(); error SignatureExpired(); error ValidatorIsClaimed(); error ZeroAddress(); error VerificationFailed(); error AutoMaxNotEnabled(); error WrongDuration(); error LockTimeExceeded(); error ContractPaused(); error StateUnchanged(); error InvalidBoostReward(); error NoReward(); error AlreadyPurchasedThisQuality(); error InsufficientNPPoint(); error InsufficientLockAmount(); error GreaterThanMaxTime(); error NotValidValidator(); error NotSuperValidator(); event ClaimFees(address indexed sender, uint256 amount); event Deposit(address indexed sender, uint256 amount, uint256 startTime, uint256 duration, uint256 endTime, uint256 time); event Claim( address indexed sender, uint256 userClaimAmount, uint256 feeAmount); event Withdraw( address indexed sender, uint256 amount, uint256 time); event SetAutoMax(address indexed sender, bool open); event PurchaseValidator(address indexed sender, uint256 NP, uint256 quality); event SetDepositFee(address indexed sender, uint256 fee); event SetClaimFee(address indexed sender, uint256 fee); event BoostRewardAdded(uint256 startTime, uint256 endTime, uint256 totalReward); event BoostRewardClaimed(address indexed sender, uint256 pendingBoostReward); event StakeForUser(address indexed sender, uint256 amount); event ValidatorOwnerChanged(address indexed newOwner); /// @notice Returns the address of the PoolFactory that created this contract. /// @dev This function returns the address of the `PoolFactory` contract, which is responsible for deploying and managing the pool contract. /// @return address The address of the PoolFactory contract that created this contract. function factory() external view returns (address); /// @notice Initializes the Validator contract with necessary parameters. /// @param _token The address of the LRDS. /// @param _admin The address of the admin who can manage the contract. /// @param _owner The address of the contract owner who can claim rewards and manage the pool. /// @param _validatorId The unique identifier for the validator. This will help distinguish different validators in the system. /// @param _quality The quality level of the validator (used for ranking or other features). /// @param _verifier The address of the verifier. /// @param _currentQualityCount The address of the verifier. /// @dev This function can only be called once during the initialization phase to set up the validator contract with all necessary parameters. function initialize(address _token, address _admin, address _owner, uint256 _validatorId, uint256 _quality, address _verifier, uint256 _currentQualityCount) external; /// @notice Creates a new lock for a specified amount of tokens with a defined duration. /// @param _amount The amount of tokens to lock for the specified duration. /// @param _lockDuration The duration for which the tokens will be locked (in seconds). /// @dev The lock duration must be valid and the reward period must be active to perform this action. /// Users will not be able to unlock their tokens before the lock duration has passed. function createLock(uint256 _amount, uint256 _lockDuration) external; /// @notice Increases the amount of staked tokens in the existing lock. /// @param _amount The additional amount of tokens to stake. /// @dev The reward period must be active for the increase to take effect. /// This function allows users to add tokens to their current lock without creating a new lock. function increaseAmount(uint256 _amount) external; /// @notice Extends the lock duration of the staked tokens. /// @param _lockDuration The new duration to extend the lock (in seconds). /// @dev The reward period must be active for the extension to occur. Users can extend their token lock period, but they cannot shorten it. function extendDuration(uint256 _lockDuration) external; /// @notice Withdraws staked tokens and claims rewards. /// @dev Users can only withdraw their tokens after the lock duration has expired. /// This function transfers the staked tokens back to the user and also releases any accumulated rewards. function withdraw() external; /// @notice Claims rewards for the user based on the staked amount. /// @dev Users can claim rewards as long as the reward period is still active. Rewards are typically proportional to the amount staked. function claim() external; /// @notice Sets whether the maximum staking amount should be automatically adjusted. /// @param _bool A boolean indicating whether to automatically adjust the maximum staking amount for the user. /// @dev This function allows the contract owner or admin to enable or disable the automatic adjustment of the maximum staking amount. function setAutoMax(bool _bool) external; /// @notice Returns the amount staked by a user and whether automatic max staking adjustment is enabled. /// @param _userAddress The address of the user whose staking information is to be retrieved. /// @return uint256 The total amount staked by the user. /// @return bool A boolean indicating whether the automatic max staking adjustment is enabled for this user. function getAmountAndAutoMax(address _userAddress) external view returns (uint256, bool); /// @notice Returns the veLrds balance of a user. /// @param _user The address of the user whose veLrds balance is to be retrieved. /// @return uint256 The amount of veLrds tokens held by the user. /// This is typically used to calculate voting or staking power in governance-related systems. function veLrdsBalance(address _user) external view returns (uint256); /// @notice Returns whether the validator has been purchased or activated. /// @return bool A boolean indicating whether the validator has been purchased (true) or not (false). function isClaimed() external view returns (bool); /// @notice Adds a boost reward for a specific validator within a defined time period. /// @param _startTime The start time of the boost period. /// @param _endTime The end time of the boost period. /// @param _rewardAmount The total amount of reward to be distributed to the validator during the boost period. /// @dev This function allows the contract to assign a reward to a validator within a specific time window. function addBoostReward(uint256 _startTime, uint256 _endTime, uint256 _rewardAmount) external; /// @dev Allows the Governance contract to stake tokens on behalf of a user. /// This function can only be called by the authorized Governance contract. /// It increases the user's staked balance by the specified amount. /// @param _user The address of the user for whom tokens are being staked. /// @param _amount The amount of tokens to stake for the user. /// @param _fromBoost Whether the boost reward deposit. function stakeFor(address _user, uint256 _amount, bool _fromBoost) external; /// @dev Checks whether a user has already purchased a validator of a specific quality. /// @param _user The address of the user to check. /// @param _quality The quality level of the validator. /// @return A boolean value indicating whether the user has purchased a validator of the specified quality. function havePurchased(address _user, uint256 _quality) external view returns (bool); /// @dev Retrieves the total cost of validators associated with a specific user. /// @param _user The address of the user to retrieve the total validator cost for. /// @return The total cost of validators for the specified user. function playerValidatorCosts(address _user) external view returns (uint256); /// @dev Updates the purchase status for a specific user and validator quality. /// This function can only be called by a valid Validator contract, /// as ensured by the `onlyValidValidator` modifier. /// @param _user The address of the user whose purchase status is being updated. /// @param _quality The quality level of the validator being purchased. function _updateHavePurchased(address _user, uint256 _quality) external; /// @dev Updates the total cost of player validators for a specific user. /// This function can only be called by a valid Validator contract, /// as ensured by the `onlyValidValidator` modifier. /// @param _user The address of the user whose total validator cost is being updated. /// @param _cost The cost to be added to the user's total validator cost. function _updatePlayerValidatorCost(address _user, uint256 _cost) external; /// @notice Retrieves staking information for a specific user. /// @param _user The wallet address of the user. /// @return amount The total tokens staked by the user. /// @return lockStartTime The timestamp when the user's staking lock period began. /// @return lockEndTime The timestamp when the user's staking lock period ends. /// @return baseReward The current pending base reward for the user. /// @return veLRDSBalance The current veLRDS balance of the user. /// @return autoMax A boolean indicating if the user has enabled automatic maximum staking. /// @return boostReward The current pending boost reward for the user. function getUserInfo(address _user) external view returns (uint256 amount, uint256 lockStartTime, uint256 lockEndTime, uint256 baseReward, uint256 veLRDSBalance, bool autoMax, uint256 boostReward); /// @notice Gets the pending rewards for a user. /// @param _userAddress The address of the user to query. /// @return The amount of pending rewards for the user. function getUserPendingReward(address _userAddress) external view returns (uint256); function totalStaked() external view returns (uint256); /// @notice This function retrieves the staking and reward information for the validator. /// @dev It returns details such as the total amount staked, the reward period's start and end times, /// the total reward available, and whether the reward has been claimed. /// @return totalStaked The total amount of tokens staked by the validator. /// @return startTime The start time of the current reward period. /// @return endTime The end time of the current reward period. /// @return totalReward The total reward available for the current reward period. /// @return isClaimed A boolean indicating whether the reward has been claimed by the validator. /// @return AllocatedValidatorRewards The total reward allocated to the validator during the current period. function getValidatorStats() external view returns (uint256 totalStaked, uint256 startTime, uint256 endTime, uint256 totalReward, bool isClaimed, uint256 AllocatedValidatorRewards); /// @notice Returns the total reward, start time, and end time for the current active boost reward period. /// @dev This function uses the `getCurrentBoostPeriod` function to determine the active boost period, /// and then retrieves the total reward, start time, and end time for that period. function getCurrentBoostReward() external view returns(uint256 totalReward, uint256 startTime, uint256 endTime); } // File: contracts/interfaces/IGovernance.sol pragma solidity ^0.8.28; interface IGovernance { error InvalidWeight(); error VotingNotOpen(); error WrongTime(); error NoVeLRDS(); error NotValidator(); error NoSuchOption(); error ExceedsAvailableWeight(); error WrongBoostTime(); error RewardDistributionNotAllowed(); error NoVotes(); error WrongStatus(); error ZeroAddress(); error ZeroAmount(); error ProposalHasStakedVotes(); error UserIsVoted(); error UserIsNotVoted(); error RewardAlreadyClaimed(); error NotAdmin(); error TimeIsNotUp(); error RewardIsZero(); error ZeroVelrds(); error RewardAlreadyDistributed(); error InvalidCycle(); error CycleTooLarge(); event ProposalCreated(uint256 indexed proposalId, uint256 startTime, uint256 endTime, string metadataURI, uint256 totalChoices); event Voted(address indexed sender, uint256 proposalId, uint256 choiceIds, uint256 weights); event BoostProposalCreated(uint256 indexed proposalId, uint256 startTime, uint256 endTime, uint256 _boostReward, uint256 _boostStartTime, uint256 _boostEndTime, uint256 validatorsNum, address[] indexed validators); event BoostRewardDistributed(uint256 indexed proposalId, uint256 indexed totalBoostReward); event BoostRewardTransferred(uint256 indexed proposalId,address indexed validator,uint256 rewardAmount); event ProposalCancelled(uint256 indexed proposalId); event BoostProposalCancelled(uint256 indexed proposalId); event RewardsClaimedAndLocked(address indexed sender, uint256 proposalId, uint256 rewardAmount); event RewardDistributionExecuted(uint256 indexed proposalId, uint256 totalReward, uint256 timestamp); event VotesReset(address indexed sender, uint256 currentCycle); /** * @dev Resets the votes for a given user. This function will clear all vote-related data for the specified user. * This could be used, for example, to allow users to re-cast their votes or to reset their voting status after a certain event. * @param _user The address of the user whose votes are to be reset. */ function resetVotes(address _user) external; /** * @dev Checks if the given proposal ID corresponds to a "boost vote" proposal. * A boost vote might refer to a special type of vote, possibly with enhanced or different effects. * @param _proposalId The ID of the proposal to be checked. * @return bool True if the proposal ID is a boost vote, false otherwise. */ function isBoostVote(uint256 _proposalId) external view returns (bool); } // File: contracts/Validator.sol pragma solidity ^0.8.28; /// @title Validator Contract /// @notice This contract allows users to stake tokens, manage reward periods, and claim rewards. /// @dev The contract uses ERC20 and includes reward management for staked tokens. contract Validator is IValidator, ReentrancyGuard { using SafeERC20 for IERC20; // RewardPeriod struct is used to record the details of a reward period struct RewardPeriod { uint256 startTime; // The start time of the reward period uint256 endTime; // The end time of the reward period uint256 totalReward; // The total reward amount for this period uint256 accTokenPerShare; // The accumulated tokens per share for this reward period uint256 lastRewardTime; // The last time rewards were distributed bool isActive; } // UserInfo struct is used to store staking information for each user struct UserInfo { uint256 amount; // The amount of tokens the user has staked uint256 lockStartTime; // The start time of the staking lock period uint256 lockEndTime; // The end time of the staking lock period uint256 rewardDebt; // The reward debt, used to calculate the user's reward share bool autoMax; // Indicates whether the user has enabled automatic maximum staking } struct BoostReward { uint256 startTime; // The start time of the reward period uint256 endTime; // The end time of the reward period uint256 totalReward; // The total reward amount for this period uint256 accTokenPerShare; // Accumulated reward per share for calculating user entitlements uint256 lastUpdatedTime; // The last update timestamp for this boost period bool isActive; } uint256 public constant DEPOSIT_MAX_FEE = 100; // The maximum deposit fee (1%) uint256 public constant CLAIM_MAX_FEE = 500; // The maximum claim fee (5%) uint256 public constant WEEK = 7 days; // One week in seconds uint256 public constant MAX_LOCK = 208 * WEEK; // Maximum lock duration 208 weeks (125798400 seconds)--> main uint256 public constant MIN_LOCK = WEEK; // Minimum lock duration (520 seconds) --> main // uint256 public constant MAX_LOCK = 14560; // Maximum lock duration (14560 seconds) -->test // uint256 public constant MIN_LOCK = 520; // Minimum lock duration (520 seconds) --> test uint256 public constant MULTIPLIER = 10**18; // The precision factor for reward calculations bool public isClaimed; // Flag to indicate whether the validator has been claimed bool public isPaused; // Flag to indicate whether the contract is paused string public _name; // The name of the validator contract uint256 public totalStaked; // The total amount of staked tokens uint256 public PRECISION_FACTOR; // The precision factor for reward calculations uint256 public depositFee; // The deposit fee percentage uint256 public claimFee; // The claim fee percentage uint256 public validatorId; // The unique identifier of the validator uint256 public currentRewardPeriodIndex; // The current reward period index uint256 public quality; // The quality level of the validator (e.g., Master, Super, etc.) uint256 public currentBoostRewardPeriodIndex; // The index of the current active boost reward period address public token; // The address of LRDS /// @inheritdoc IValidator address public factory; // The address of the PoolFactory that created this contract // address private voter; // The address of the voter (for validation purposes) address public governance; // The address of the governance (for validation purposes) address public admin; // The address of the contract admin address public owner; // The address of the contract owner address public verifier; // The address of the verifier for signature verification address public masterValidator; // The address of the master validator contract // Mapping to store reward periods mapping(uint256 => RewardPeriod) public rewardPeriods; // Mapping to store boost reward periods mapping(uint256 => BoostReward) public boostRewards; // Mapping to store information about each user who stakes tokens mapping(address => UserInfo) public userInfo; mapping(address => uint256) public boostRewardDebt; // Only one quality Validator can be purchased per player mapping(address => mapping(uint256 => bool)) public havePurchased; // The amount of Lock used by the player to purchase the Validator mapping(address => uint256) public playerValidatorCosts; // Modifier to ensure only the admin can access the function modifier onlyAdmin() { if (msg.sender != address(admin)) revert NotAdmin(); _; } // Modifier to ensure only the owner can access the function modifier onlyOwner() { if (msg.sender != address(owner)) revert NotOwner(); _; } // Modifier to ensure the contract is not paused modifier whenNotPaused() { if (isPaused) revert ContractPaused(); _; } // Modifier to ensure only the factory can access the function modifier onlyGovernance() { if (msg.sender != governance) revert NotGovernance(); _; } // Modifier to ensure only the valid validator can access the function modifier onlyValidValidator() { if (!IValidatorFactory(factory).isValidatorl(address(this))) revert NotValidValidator(); _; } constructor() {} /// @inheritdoc IValidator function initialize( address _token, address _admin, address _owner, uint256 _validatorId, uint256 _quality, address _verifier, uint256 _currentQualityCount ) external nonReentrant { if (factory != address(0)) revert FactoryAlreadySet(); token = _token; factory = msg.sender; // voter = IValidatorFactory(factory).voter(); (admin, owner, validatorId, quality) = (_admin, _owner, _validatorId, _quality); if (_quality < 1 || _quality > 7) revert QualityWrong(); PRECISION_FACTOR = 10 ** 12; string[7] memory nodeTypes = [ "BLOCKLORDS Master", // index 0, quality 1 "Super Validator", // index 1, quality 2 "Basic Validator", // index 2, quality 3 "Special Validator", // index 3, quality 4 "Rare Validator", // index 4, quality 5 "Epic Validator", // index 5, quality 6 "Legendary Validator" // index 6, quality 7 ]; string memory nodeType = nodeTypes[_quality - 1]; if (_quality == 1) { depositFee = 0; claimFee = 0; _name = nodeType; isClaimed = true; } else { depositFee = 100; // 1% claimFee = 500; // 5% _name = string(abi.encodePacked(nodeType, " ", Strings.toString(_currentQualityCount))); isClaimed = false; } verifier = _verifier; isPaused = false; } /// @notice Sets a new reward period for staking. /// @param _startTime The start time of the reward period (must be in the future). /// @param _endTime The end time of the reward period (must be after start time). /// @param _totalReward The total amount of reward tokens available for this period. /// @dev This function can only be called by the admin. function setRewardPeriod( uint256 _startTime, uint256 _endTime, uint256 _totalReward ) external nonReentrant onlyAdmin { // Check if total reward is greater than 0 if (_totalReward == 0) revert InvalidTotalReward(); // If it's the first reward period if (currentRewardPeriodIndex == 0) { // Start time should be in the future if (_startTime <= block.timestamp) revert StartTimeNotInFuture(); // End time should be after start time if (_endTime <= _startTime) revert EndTimeBeforeStartTime(); } else { // For subsequent reward periods, start time should be the end time of the previous period RewardPeriod memory previousPeriod = rewardPeriods[currentRewardPeriodIndex - 1]; if (_startTime <= previousPeriod.endTime) revert StartTimeNotAsExpected(); } rewardPeriods[currentRewardPeriodIndex++] = RewardPeriod({ startTime: _startTime, endTime: _endTime, totalReward: _totalReward, accTokenPerShare: 0, lastRewardTime: _startTime, isActive: true }); IValidatorFactory(factory).addTotalValidators(_startTime, _endTime, _totalReward); } /*////////////////////////////////////////////////////////////// VALIDATOR //////////////////////////////////////////////////////////////*/ /// @inheritdoc IValidator function createLock(uint256 _amount, uint256 _lockDuration) external nonReentrant whenNotPaused { if (_amount == 0) revert ZeroAmount(); if (_lockDuration == 0 || _lockDuration < MIN_LOCK || _lockDuration > MAX_LOCK) revert WrongDuration(); UserInfo storage user = userInfo[msg.sender]; if (user.amount > 0 || user.lockStartTime > 0) revert AllreadyLocked(); IValidatorFactory(factory).addTotalStakedWallet(); _deposit(_amount, _lockDuration, msg.sender, false); } /// @inheritdoc IValidator function increaseAmount(uint256 _amount) external nonReentrant whenNotPaused { if (_amount == 0) revert ZeroAmount(); UserInfo storage user = userInfo[msg.sender]; if (user.amount == 0) revert NoLockCreated(); if (user.autoMax == false) { if (block.timestamp > user.lockEndTime) revert LockTimeExceeded(); } _deposit(_amount, 0, msg.sender, false); } /// @inheritdoc IValidator function extendDuration(uint256 _lockDuration) external nonReentrant whenNotPaused { if (_lockDuration == 0 || _lockDuration > MAX_LOCK) revert WrongDuration(); UserInfo storage user = userInfo[msg.sender]; if (user.amount == 0) revert NoLockCreated(); if (user.autoMax == true) revert AutoMaxTime(); uint256 newEndTime; if (block.timestamp > user.lockEndTime) { // If lock has already expired, start from current time newEndTime = block.timestamp + _lockDuration; } else { // Otherwise, extend from the current lock end time newEndTime = user.lockEndTime + _lockDuration; } if (newEndTime > block.timestamp + MAX_LOCK) revert GreaterThanMaxTime(); // Reset votes associated with the user if (block.timestamp > user.lockEndTime && address(this) == masterValidator) { IGovernance(governance).resetVotes(msg.sender); } _deposit(0, _lockDuration, msg.sender, false); } /// @inheritdoc IValidator function claim() external nonReentrant whenNotPaused { UserInfo storage user = userInfo[msg.sender]; if (user.amount == 0) revert NoLockCreated(); // Update global reward state and user-specific rewards _updateValidator(); _updateBoostReward(); // Call _claim to distribute the rewards _claim(msg.sender); _updateUserDebt(user); } /// @inheritdoc IValidator function withdraw() external nonReentrant whenNotPaused { UserInfo storage user = userInfo[msg.sender]; if (user.amount == 0) revert ZeroAmount(); if (block.timestamp < user.lockEndTime) revert TimeNotUp(); if (user.autoMax == true) revert AutoMaxTime(); // Update global reward state and user-specific rewards _updateValidator(); _updateBoostReward(); if (IERC20(token).balanceOf(address(this)) < user.amount) revert NotEnoughRewardToken(); // Call _claim to distribute the rewards _claim(msg.sender); // Transfer the user's staked amount back to them IERC20(token).safeTransfer(msg.sender, user.amount); // Reset votes associated with the user if (address(this) == masterValidator) { IGovernance(governance).resetVotes(msg.sender); } // Update the global staking total totalStaked -= user.amount; // Update the total staked amount and wallet count in the factory contract IValidatorFactory(factory).subTotalStakedAmount(user.amount); IValidatorFactory(factory).subTotalStakedWallet(); emit Withdraw(msg.sender, user.amount, block.timestamp); delete userInfo[msg.sender]; boostRewardDebt[msg.sender] = 0; } /// @inheritdoc IValidator function setAutoMax(bool _bool) external nonReentrant whenNotPaused { UserInfo storage user = userInfo[msg.sender]; if (user.amount == 0) revert NoLockCreated(); if (user.autoMax == _bool) revert TheSameValue(); user.autoMax = _bool; user.lockEndTime = block.timestamp + MAX_LOCK; emit SetAutoMax(msg.sender, _bool); } /// @notice Allows a user to purchase a validator by providing a signature and other required parameters. /// @dev This function verifies that the provided signature is valid, ensures the user has sufficient funds, /// and that certain conditions are met before claiming the validator. /// @param _np The number of validators being purchased (may represent quantity or other related value). /// @param _quality The quality level of the validator. /// @param _deadline The deadline by which the transaction must be completed, used to prevent replay attacks. uint256 , /// @param _v The recovery byte of the signature. /// @param _r The 'r' part of the ECDSA signature. /// @param _s The 's' part of the ECDSA signature. /// @dev This function ensures that only authorized users can purchase the validator and that they meet /// the necessary requirements for purchasing. function purchaseValidator(uint256 _np, uint256 _quality, uint256 _deadline, uint8 _v, bytes32 _r, bytes32 _s) external nonReentrant whenNotPaused { IValidator _masterValidator = IValidator(masterValidator); // Check that the deadline has not passed, ensuring the signature is still valid if (_deadline < block.timestamp) revert SignatureExpired(); // Ensure that the number of validators to be purchased is greater than 0 if (_np == 0) revert InsufficientNPPoint(); if (_quality != quality) revert QualityWrong(); // Ensure that the validator has not already been claimed if (isClaimed == true) revert ValidatorIsClaimed(); if (_masterValidator.havePurchased(msg.sender , _quality)) revert AlreadyPurchasedThisQuality(); // Retrieve the amount of tokens and the auto-max setting from the master validator contract (uint256 amount, bool isAutoMax) = _masterValidator.getAmountAndAutoMax(msg.sender); // Ensure that auto-max is enabled for the user (this flag must be true to proceed) if (isAutoMax == false) revert AutoMaxNotEnabled(); // Check that the user has staked enough tokens to meet the required minimum amount for the given quality uint256 requiredAmount = IValidatorFactory(factory).minAmountForQuality(quality); if (requiredAmount == 0) revert ZeroAmount(); if (amount < (requiredAmount * MULTIPLIER + _masterValidator.playerValidatorCosts(msg.sender))) revert InsufficientLockAmount(); // Verify the signature by hashing the message and recovering the address { // Generate the message hash using the parameters bytes32 message = keccak256(abi.encodePacked(_np, address(this), _deadline, block.chainid, msg.sender, _quality)); bytes32 hash = keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", message)); // Recover the address from the signature address recover = ecrecover(hash, _v, _r, _s); // Ensure the recovered address matches the expected verifier address if (recover != verifier) revert VerificationFailed(); } // Mark the validator as claimed and set the owner to the message sender isClaimed = true; owner = msg.sender; _masterValidator._updateHavePurchased(msg.sender, _quality); _masterValidator._updatePlayerValidatorCost(msg.sender, requiredAmount * MULTIPLIER); // Emit the PurchaseValidator event to notify that the purchase was successful emit PurchaseValidator(msg.sender, _np, _quality); } /// @inheritdoc IValidator function getUserPendingReward(address _userAddress) public view returns (uint256) { UserInfo storage user = userInfo[_userAddress]; uint256 totalPending = 0; for (uint256 i = 0; i < currentRewardPeriodIndex; i ++) { RewardPeriod memory period = rewardPeriods[i]; if (user.amount == 0 || block.timestamp < period.startTime) { break; } uint256 multiplier = _getMultiplier(period.lastRewardTime, block.timestamp, period.endTime); uint256 rewardPerSecond = period.totalReward / (period.endTime - period.startTime); uint256 lrdsReward = multiplier * rewardPerSecond; uint256 accTokenPerShare = period.accTokenPerShare + (lrdsReward * PRECISION_FACTOR) / totalStaked; uint256 pending = (user.amount * accTokenPerShare) / PRECISION_FACTOR; totalPending += pending; } return totalPending - user.rewardDebt; } /// @notice Calculates the total rewards for a validator based on the reward periods and current time. /// @dev This function iterates through all reward periods and calculates the rewards that have been earned, /// considering the time elapsed in each period. Rewards are calculated based on the proportion of time /// that has passed in each period relative to the total duration of the period. /// @return totalRewards The total rewards accumulated by the validator over all reward periods. function getValidatorRewards() public view returns (uint256) { uint256 totalRewards = 0; // Iterate through each reward period and calculate rewards for that period for (uint256 i = 0; i < currentRewardPeriodIndex; i++) { uint256 period = 0; // If the current block timestamp is greater than the reward period's start time if (block.timestamp > rewardPeriods[i].startTime) { period = block.timestamp - rewardPeriods[i].startTime; // Ensure the period doesn't exceed the end time of the reward period if (block.timestamp > rewardPeriods[i].endTime) { period = rewardPeriods[i].endTime - rewardPeriods[i].startTime; } } uint256 duration = rewardPeriods[i].endTime - rewardPeriods[i].startTime; // Add the reward for this period, proportional to the time spent in the period totalRewards += (period * rewardPeriods[i].totalReward) / duration; } return totalRewards; } /// @notice Retrieves the amount of staked tokens and the auto-max setting for a user. /// @param _userAddress The address of the user whose staking information is to be retrieved. /// @return amount The amount of tokens the user has staked. /// @return isAutoMax Whether the auto-max feature is enabled for the user. function getAmountAndAutoMax(address _userAddress) external view returns (uint256, bool) { if (quality == 1) { UserInfo storage info = userInfo[_userAddress]; return (info.amount, info.autoMax); } else { (uint256 amount, bool isAutoMax) = IValidator(masterValidator).getAmountAndAutoMax(_userAddress); return (amount, isAutoMax); } } /// @notice Handles the deposit of staked tokens into the contract for a user. /// @dev This function transfers tokens to the contract, applies the deposit fee, updates the user's staking amount, /// and records the lock duration if specified. It also updates the total staked amount in the factory contract. /// @param _amount The amount of tokens the user wishes to deposit. /// @param _lockDuration The duration for which the tokens will be locked. If set to 0, the tokens will not be locked. /// @param _userAddress The user wallet address. /// @param _fromBoost Whether the boost reward deposit. function _deposit(uint256 _amount, uint256 _lockDuration, address _userAddress, bool _fromBoost) internal { UserInfo storage user = userInfo[_userAddress]; // Update global reward state and user-specific rewards _updateValidator(); _updateBoostReward(); if (_amount > 0) { uint256 amountAfterFee = _amount; uint256 fee = 0; if (!_fromBoost) { // Calculate the deposit fee (depositFee is in basis points, e.g., 500 = 5%) fee = (_amount * depositFee) / 10000; if (fee > _amount) revert InsufficientAmount(); amountAfterFee = _amount - fee; } // Call _claim to distribute the rewards if (user.amount > 0) { _claim(_userAddress); } if (!_fromBoost) { // Transfer the staked amount to the contract IERC20(token).safeTransferFrom(_userAddress, address(this), amountAfterFee); // If there is a fee, transfer it to the owner address if (fee > 0) { IERC20(token).safeTransferFrom(_userAddress, owner, fee); } } // Update the user's staked amount user.amount += amountAfterFee; totalStaked += amountAfterFee; _updateUserDebt(user); _updateUserBoostDebt(_userAddress); // If a lock duration is provided, set the lock start and end times if (_lockDuration > 0) { user.lockStartTime = block.timestamp; user.lockEndTime = _lockDuration + block.timestamp; } // Update the total staked amount in the factory contract IValidatorFactory(factory).addTotalStakedAmount(amountAfterFee); } // If lock duration is provided but no amount is being deposited, just extend the lock duration if (_lockDuration > 0 && _amount == 0) { user.lockEndTime = block.timestamp < user.lockEndTime ? user.lockEndTime + _lockDuration : block.timestamp + _lockDuration; } // Emit the Deposit event emit Deposit(_userAddress, _amount, user.lockStartTime, _lockDuration, user.lockEndTime, block.timestamp); } /// @notice Returns the index of the current active reward period based on the current time. /// @dev This function checks which reward period is currently active based on the block timestamp. function getCurrentPeriod() public view returns(uint256) { // If there are no reward periods, return 0 if (currentRewardPeriodIndex == 0) { return 0; } uint256 currentPeriod = 0; // Loop through all reward periods and check if the current time is within any of them for (uint256 i = 0; i < currentRewardPeriodIndex; i++) { RewardPeriod storage period = rewardPeriods[i]; currentPeriod = i; // If the current time is within the reward period's valid range (startTime to endTime) if (block.timestamp >= period.startTime && block.timestamp <= period.endTime) { return i; // Return the index of the active period } } return currentPeriod; } /// @notice Claims the pending rewards for a user and transfers the reward amount. /// @dev This function calculates the pending rewards, applies the claim fee, and transfers the rewards to the user. /// It also transfers the fee portion to the contract owner. /// @param _userAddress The user wallet address. /// @return userClaimAmount The amount of rewards the user can claim after the fee is deducted. /// @return feeAmount The amount of rewards deducted as a fee. function _claim(address _userAddress) internal returns (uint256 userClaimAmount, uint256 feeAmount) { UserInfo storage user = userInfo[_userAddress]; uint256 totalPending = _calculateTotalPending(user); if (totalPending > 0) { // Ensure the contract has enough reward tokens to cover the pending claim if (IERC20(token).balanceOf(address(this)) < totalPending) revert NotEnoughRewardToken(); // Calculate the claim fee (claimFee is in basis points, e.g., 300 = 3%) feeAmount = (totalPending * claimFee) / 10000; userClaimAmount = totalPending - feeAmount; // Transfer the fee to the contract owner if (feeAmount > 0) { IERC20(token).safeTransfer(owner, feeAmount); } // Transfer the remaining rewards to the user IERC20(token).safeTransfer(_userAddress, userClaimAmount); emit Claim(_userAddress, userClaimAmount, feeAmount); } uint256 totalBoostPending = _calculateBoostPending(_userAddress); if (totalBoostPending > 0) { _claimBoostReward(_userAddress, totalBoostPending); } } // /// @notice Calculates the total pending rewards for a user across all eligible reward periods. // /// @param _user The UserInfo struct of the user. // /// @return totalPending The total amount of pending rewards for the user. function _calculateTotalPending(UserInfo storage _user) internal view returns (uint256) { uint totalPending = 0; for (uint256 i = 0; i < currentRewardPeriodIndex; i++) { RewardPeriod memory period = rewardPeriods[i]; if (_user.amount == 0 || block.timestamp < period.startTime) { continue; } uint256 pending = (_user.amount * period.accTokenPerShare) / PRECISION_FACTOR; totalPending += pending; } return totalPending - _user.rewardDebt; } /// @notice Updates the validator state based on the current time. /// @dev This function should be called regularly to ensure accurate reward calculations. function _updateValidator() internal{ // Loop through all reward periods to update rewards for the active periods for (uint256 i = 0; i < currentRewardPeriodIndex; i++) { RewardPeriod storage period = rewardPeriods[i]; // Check if the current time is within the valid time range of the reward period if (block.timestamp >= period.startTime) { // If the current time is earlier than the last reward update time, skip this period if (block.timestamp <= period.lastRewardTime) { continue; } // Calculate the reward for the current period and update the accumulated rewards per share if (period.isActive == true) { if (totalStaked > 0) { uint256 lrdsReward = _calculateLrdsReward(i); period.accTokenPerShare += (lrdsReward * PRECISION_FACTOR) / totalStaked; } if (block.timestamp >= period.endTime) { period.isActive = false; period.lastRewardTime = period.endTime; } else { period.lastRewardTime = block.timestamp; } } } } } /// @notice Updates the user's accumulated rewards across active reward periods. /// @param _user The user information struct to be updated. function _updateUserDebt(UserInfo storage _user) internal { uint256 totalDebt = 0; // Loop through each reward period from the user's last updated period to the current for (uint256 i = 0; i < currentRewardPeriodIndex; i++) { RewardPeriod storage period = rewardPeriods[i]; if (block.timestamp < period.startTime) { break; } totalDebt += (_user.amount * period.accTokenPerShare) / PRECISION_FACTOR; } _user.rewardDebt = totalDebt; } /// @notice Calculates the LRDS reward for a given reward period index. /// @dev This function calculates the reward based on the elapsed time in the reward period and applies the multiplier. /// The multiplier is derived from the time between the last reward time and the current block timestamp, /// relative to the reward period's duration. /// @param index The index of the reward period for which the reward should be calculated. /// @return The amount of LRDS reward for the specified period, considering the elapsed time and multiplier. function _calculateLrdsReward(uint256 index) internal view returns (uint256) { // Retrieve the details of the reward period at the given index RewardPeriod memory period = rewardPeriods[index]; // Calculate the reward per second for the reward period uint256 rewardPerSecond = period.totalReward / (period.endTime - period.startTime); // Calculate the multiplier based on the elapsed time since the last reward time uint256 multiplier = _getMultiplier(period.lastRewardTime, block.timestamp, period.endTime); // Return the calculated reward, applying the multiplier to the reward per second return multiplier * rewardPerSecond; } /// @notice Calculates the multiplier for reward calculation based on the elapsed time in the reward period. /// @param start The start time of the reward calculation (e.g., lastRewardTime or period start). /// @param end The end time for the reward calculation (e.g., current block timestamp). /// @param periodEnd The end time of the reward period being calculated. /// @return The multiplier, representing the elapsed time within the period. function _getMultiplier(uint256 start, uint256 end, uint256 periodEnd) internal pure returns (uint256) { if (end <= start) return 0; // Ensures that the calculation does not exceed the reward period's end return (end < periodEnd ? end : periodEnd) - start; } /// @inheritdoc IValidator function _updateHavePurchased(address _user, uint256 _quality) external onlyValidValidator { havePurchased[_user][_quality] = true; } /// @inheritdoc IValidator function _updatePlayerValidatorCost(address _user, uint256 _cost) external onlyValidValidator { playerValidatorCosts[_user] += _cost; } /// @inheritdoc IValidator function getUserInfo(address _user) external view returns ( uint256 amount, uint256 lockStartTime, uint256 lockEndTime, uint256 baseReward, uint256 veLRDSBalance, bool autoMax, uint256 boostReward) { // Retrieve the user's staking information UserInfo memory user = userInfo[_user]; // Get the current base reward of the user uint256 currentBaseReward = getUserPendingReward(_user); // Get the current veLRDS balance of the user uint256 currentVeLRDSBalance = veLrdsBalance(_user); uint256 currentBoostReward = getUserBoostReward(_user); // Return all relevant data return ( user.amount, user.lockStartTime, user.lockEndTime, currentBaseReward, currentVeLRDSBalance, user.autoMax, currentBoostReward); } /// @inheritdoc IValidator function getValidatorStats() external view returns ( uint256 _totalStaked, uint256 _currentRewardStartTime, uint256 _currentRewardEndTime, uint256 _currentRewardTotal, bool _isClaimed, uint256 _AllocatedValidatorRewards) { // Retrieve the total staked amount _totalStaked = totalStaked; // Get the current reward period index uint256 currentPeriodIndex = getCurrentPeriod(); uint256 getAllocatedValidatorRewards = getValidatorRewards(); // Fetch the details of the current reward period RewardPeriod memory currentPeriod = rewardPeriods[currentPeriodIndex]; _currentRewardStartTime = currentPeriod.startTime; _currentRewardEndTime = currentPeriod.endTime; _currentRewardTotal = currentPeriod.totalReward; _isClaimed = isClaimed; _AllocatedValidatorRewards = getAllocatedValidatorRewards; // Return all relevant data return (totalStaked, _currentRewardStartTime, _currentRewardEndTime, _currentRewardTotal, _isClaimed, _AllocatedValidatorRewards); } /*////////////////////////////////////////////////////////////// GOVERNANCE //////////////////////////////////////////////////////////////*/ /// @notice Return the voting weight of a givne user /// @param _user The address of a user function veLrdsBalance(address _user) public view returns (uint256) { UserInfo storage user = userInfo[_user]; // If user has no amount staked or if not the master validator, return 0 if (user.amount == 0 || quality != 1) return 0; // Determine the effective lock end time uint256 effectiveLockEndTime = user.autoMax ? block.timestamp + MAX_LOCK : user.lockEndTime; // Ensure the lock period has not expired if (block.timestamp >= effectiveLockEndTime) return 0; // Calculate the duration remaining until the effective lock end time uint256 duration = effectiveLockEndTime - block.timestamp; // Calculate veLrds based on remaining lock duration uint256 veLrds = (user.amount * duration) / MAX_LOCK; return veLrds; } /// @inheritdoc IValidator function stakeFor(address _user, uint256 _amount, bool _fromBoost) external onlyGovernance { // Increase the user's staked amount UserInfo storage user = userInfo[_user]; if (user.amount == 0 ) revert NoLockCreated(); if (user.autoMax == false) { if (block.timestamp > user.lockEndTime) revert LockTimeExceeded(); } _deposit(_amount, 0, _user, _fromBoost); emit StakeForUser(_user, _amount); } /** * @dev Adds a new boost reward period. * @param _startTime The start time of the boost reward period. * @param _endTime The end time of the boost reward period. * @param _totalReward The total reward allocated for this boost period. */ function addBoostReward(uint256 _startTime, uint256 _endTime, uint256 _totalReward) external onlyGovernance { boostRewards[currentBoostRewardPeriodIndex++] = BoostReward({ startTime: _startTime, endTime: _endTime, totalReward: _totalReward, accTokenPerShare: 0, lastUpdatedTime: _startTime, isActive: true }); emit BoostRewardAdded(_startTime, _endTime, _totalReward); } /** * @dev Allows users to claim accumulated boost rewards. * Claims all pending rewards from all unclaimed boost periods and transfers them to the user. * The function updates the claimed amount within each boost period and adjusts the user's reward debt. /// @param _userAddress The user wallet address. * @param _totalBoostPending The amount of the boost reward period. */ function _claimBoostReward(address _userAddress, uint256 _totalBoostPending) internal whenNotPaused { // Transfer the total pending boost reward to the user IERC20(token).safeTransfer(_userAddress, _totalBoostPending); _updateUserBoostDebt(_userAddress); emit BoostRewardClaimed(_userAddress, _totalBoostPending); } /// @notice Updates the user's accumulated rewards across boost reward periods. /// @param _userAddress The user information struct to be updated. function _updateUserBoostDebt(address _userAddress) internal { UserInfo storage user = userInfo[_userAddress]; uint256 totalBoostDebt = 0; // Loop through each reward period from the user's last updated period to the current for (uint256 i = 0; i < currentBoostRewardPeriodIndex; i++) { BoostReward storage boost = boostRewards[i]; if (block.timestamp < boost.startTime) { break; } totalBoostDebt += (user.amount * boost.accTokenPerShare) / PRECISION_FACTOR; } boostRewardDebt[_userAddress] = totalBoostDebt; } /** * @dev Updates the boost reward state for a specific boost period. * Calculates and updates the accumulated rewards (accTokenPerShare) since the last update. */ function _updateBoostReward() internal { // Loop through all reward periods to update rewards for the active periods for (uint256 i = 0; i < currentBoostRewardPeriodIndex; i++) { BoostReward storage boost = boostRewards[i]; // Check if the current time is within the valid time range of the reward period if (block.timestamp >= boost.startTime) { // If the current time is earlier than the last reward update time, skip this period if (block.timestamp <= boost.lastUpdatedTime) { continue; } // Calculate the reward for the current period and update the accumulated rewards per share if (boost.isActive == true) { if (totalStaked > 0) { uint256 boostReward = _calculateBoostReward(i); boost.accTokenPerShare += (boostReward * PRECISION_FACTOR) / totalStaked; } if (block.timestamp >= boost.endTime) { boost.isActive = false; boost.lastUpdatedTime = boost.endTime; } else { boost.lastUpdatedTime = block.timestamp; } } } } } /** * @dev Calculates the pending boost reward for a user in a specified boost period. * @param _boostIndex The index of the boost period for which to calculate pending rewards. * @return The pending reward amount for the user in the specified boost period. */ function _calculateBoostReward(uint256 _boostIndex) internal view returns (uint256) { BoostReward memory boost = boostRewards[_boostIndex]; // Calculate the reward per second for the boost reward period uint256 boostRewardPerSecond = boost.totalReward / (boost.endTime - boost.startTime); // Calculate the multiplier based on the elapsed time since the last reward time uint256 multiplier = _getMultiplier(boost.lastUpdatedTime, block.timestamp, boost.endTime); // Return the calculated reward, applying the multiplier to the reward per second return multiplier * boostRewardPerSecond; } // /// @notice Calculates the total boost pending rewards for a user across all eligible reward periods. // /// @param _userAddress The user wallet address. // /// @return totalBoostPending The total amount of boost pending rewards for the user. function _calculateBoostPending(address _userAddress) internal view returns (uint256) { UserInfo storage user = userInfo[_userAddress]; uint totalBoostPending = 0; // Loop through each reward period from last updated period to the current for (uint256 i = 0; i < currentBoostRewardPeriodIndex; i++) { BoostReward memory boost = boostRewards[i]; if (user.amount == 0 || block.timestamp < boost.startTime) continue; totalBoostPending += (user.amount * boost.accTokenPerShare) / PRECISION_FACTOR; } return totalBoostPending - boostRewardDebt[_userAddress]; } /** * @dev Retrieves the total pending boost reward for a user across all unclaimed boost periods. * @param _userAddress The address of the user. * @return The total pending boost reward for the specified user. */ function getUserBoostReward(address _userAddress) public view returns (uint256) { UserInfo storage user = userInfo[_userAddress]; uint256 totalBoostPending = 0; for (uint256 i = 0; i < currentBoostRewardPeriodIndex; i++) { BoostReward memory boost = boostRewards[i]; if (user.amount == 0 || block.timestamp < boost.startTime) { continue; } uint256 multiplier = _getMultiplier(boost.lastUpdatedTime, block.timestamp, boost.endTime); uint256 rewardPerSecond = boost.totalReward / (boost.endTime - boost.startTime); uint256 boostReward = multiplier * rewardPerSecond; uint256 accTokenPerShare = boost.accTokenPerShare + (boostReward * PRECISION_FACTOR) / totalStaked; uint256 pending = (user.amount * accTokenPerShare) / PRECISION_FACTOR; totalBoostPending += pending; } return totalBoostPending - boostRewardDebt[_userAddress]; } /// @notice Returns the index of the current active boost reward period based on the current time. /// @dev This function checks which boost reward period is currently active based on the block timestamp. function getCurrentBoostPeriod() public view returns(uint256) { // If there are no boost periods, return 0 if (currentBoostRewardPeriodIndex == 0) { return 0; } uint256 currentBoostPeriod = 0; // Loop through all boost periods and check if the current time is within any of them for (uint256 i = 0; i < currentBoostRewardPeriodIndex; i++) { BoostReward storage period = boostRewards[i]; currentBoostPeriod = i; // If the current time is within the boost period's valid range (startTime to endTime) if (block.timestamp >= period.startTime && block.timestamp <= period.endTime && period.isActive) { return i; // Return the index of the active boost period } } return currentBoostPeriod; } /// @inheritdoc IValidator function getCurrentBoostReward() external view returns(uint256 totalReward, uint256 startTime, uint256 endTime) { uint256 currentBoostPeriodIndex = getCurrentBoostPeriod(); // Get the boost reward info BoostReward memory currentBoostPeriod = boostRewards[currentBoostPeriodIndex]; return (currentBoostPeriod.totalReward, currentBoostPeriod.startTime,currentBoostPeriod.endTime); } /*////////////////////////////////////////////////////////////// OWNER //////////////////////////////////////////////////////////////*/ /// @notice Sets the deposit fee for the contract. /// @param _fee The new fee percentage to set. /// @dev Only the owner can call this function. function setDepositFee(uint256 _fee) external nonReentrant whenNotPaused onlyOwner { if (_fee > DEPOSIT_MAX_FEE) revert FeeTooHigh(); depositFee = _fee; emit SetDepositFee(msg.sender, _fee); } // @notice Sets the claim fee for the contract. /// @param _fee The new fee percentage to set. /// @dev Only the owner can call this function. function setClaimFee(uint256 _fee) external nonReentrant whenNotPaused onlyOwner { if (_fee > CLAIM_MAX_FEE) revert FeeTooHigh(); claimFee = _fee; emit SetClaimFee(msg.sender, _fee); } /*////////////////////////////////////////////////////////////// ADMIN //////////////////////////////////////////////////////////////*/ /// @notice Sets a new name for the validator. /// @param _newName The new name to set. /// @dev Only the admin can call this function. function setName(string calldata _newName) external onlyAdmin { _name = _newName; } /** * @dev Sets the address of the verifier for signature verification. * @param _verifier The address of the verifier contract. */ function setVerifier(address _verifier) external onlyAdmin { if (_verifier == address(0)) revert ZeroAddress(); verifier = _verifier; } /// @notice Sets the address of the master validator. /// @dev This function allows the admin to set or update the master validator address. /// The new address must be non-zero to ensure valid assignments. /// @param _validator The address of the new master validator. function setMasterValidator(address _validator) external onlyAdmin { // Ensure the provided address is not zero if (_validator == address(0)) revert ZeroAddress(); // Set the master validator address masterValidator = _validator; } /// @notice Sets the address of the governance. /// @dev This function allows the admin to set or update the governance address. /// The new address must be non-zero to ensure valid assignments. /// @param _governance The address of the new governance. function setGovernance(address _governance) external onlyAdmin { // Ensure the provided address is not zero if (_governance == address(0)) revert ZeroAddress(); // Set the governance address governance = _governance; } /** * @dev Allows the contract admin to pause or unpause the contract. * Only the admin can call this function to change the contract's paused status. * If the contract is already in the desired state, it will revert with `TheSameValue` error. * * @param _paused A boolean value indicating whether to pause (true) or unpause (false) the contract. */ function setPause(bool _paused) external onlyAdmin { // If the new paused status is the same as the current one, revert the transaction if (_paused == isPaused) revert TheSameValue(); // Update the paused status to the new value isPaused = _paused; } /// @notice This function allows the admin to change the owner of a Validator with quality 2 (non-sellable). /// @dev Only the admin can call this function, and it applies to Validators with quality 2 (Super Validators). /// @param _newOwner The new owner address for the Validator. function changeValidatorOwner(address _newOwner) external onlyAdmin { // Ensure that the Validator's quality is 2 (Super Validator) if (quality != 2) revert NotSuperValidator(); isClaimed = true; // Update the owner to the new address owner = _newOwner; emit ValidatorOwnerChanged(_newOwner); } /** * @dev Sets the address of the new owner. * This function can only be called by the current admin. * Once executed, the specified address will be set as the owner of the contract. * * @param _newOwner The address of the new owner. */ function setOwner(address _newOwner) external onlyAdmin { if (_newOwner != address(0)) revert ZeroAddress(); owner = _newOwner; } /** * @dev Sets the address of the new admin. * This function can only be called by the current admin. * Once executed, the specified address will be set as the admin of the contract. * * @param _newAdmin The address of the new admin. */ function setAdmin(address _newAdmin) external onlyAdmin { if (_newAdmin != address(0)) revert ZeroAddress(); admin = _newAdmin; } }
Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AllreadyLocked","type":"error"},{"inputs":[],"name":"AlreadyPurchasedThisQuality","type":"error"},{"inputs":[],"name":"AutoMaxNotEnabled","type":"error"},{"inputs":[],"name":"AutoMaxTime","type":"error"},{"inputs":[],"name":"ContractPaused","type":"error"},{"inputs":[],"name":"EndTimeBeforeStartTime","type":"error"},{"inputs":[],"name":"FactoryAlreadySet","type":"error"},{"inputs":[],"name":"FeeTooHigh","type":"error"},{"inputs":[],"name":"GreaterThanMaxTime","type":"error"},{"inputs":[],"name":"InsufficientAmount","type":"error"},{"inputs":[],"name":"InsufficientLockAmount","type":"error"},{"inputs":[],"name":"InsufficientNPPoint","type":"error"},{"inputs":[],"name":"InvalidBoostReward","type":"error"},{"inputs":[],"name":"InvalidTotalReward","type":"error"},{"inputs":[],"name":"LockTimeExceeded","type":"error"},{"inputs":[],"name":"NoLockCreated","type":"error"},{"inputs":[],"name":"NoReward","type":"error"},{"inputs":[],"name":"NotAdmin","type":"error"},{"inputs":[],"name":"NotEnoughRewardToken","type":"error"},{"inputs":[],"name":"NotEnoughStakeToken","type":"error"},{"inputs":[],"name":"NotFactory","type":"error"},{"inputs":[],"name":"NotGovernance","type":"error"},{"inputs":[],"name":"NotOwner","type":"error"},{"inputs":[],"name":"NotSuperValidator","type":"error"},{"inputs":[],"name":"NotValidValidator","type":"error"},{"inputs":[],"name":"QualityWrong","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"SignatureExpired","type":"error"},{"inputs":[],"name":"StartTimeNotAsExpected","type":"error"},{"inputs":[],"name":"StartTimeNotInFuture","type":"error"},{"inputs":[],"name":"StateUnchanged","type":"error"},{"inputs":[],"name":"TheSameValue","type":"error"},{"inputs":[],"name":"TimeNotUp","type":"error"},{"inputs":[],"name":"ValidatorIsClaimed","type":"error"},{"inputs":[],"name":"VerificationFailed","type":"error"},{"inputs":[],"name":"WrongDuration","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"inputs":[],"name":"ZeroAmount","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"startTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalReward","type":"uint256"}],"name":"BoostRewardAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"pendingBoostReward","type":"uint256"}],"name":"BoostRewardClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"userClaimAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"feeAmount","type":"uint256"}],"name":"Claim","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ClaimFees","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"startTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"duration","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"time","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"NP","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"quality","type":"uint256"}],"name":"PurchaseValidator","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"bool","name":"open","type":"bool"}],"name":"SetAutoMax","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"fee","type":"uint256"}],"name":"SetClaimFee","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"fee","type":"uint256"}],"name":"SetDepositFee","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"StakeForUser","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"ValidatorOwnerChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"time","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"CLAIM_MAX_FEE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEPOSIT_MAX_FEE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_LOCK","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_LOCK","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MULTIPLIER","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRECISION_FACTOR","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WEEK","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"},{"internalType":"uint256","name":"_quality","type":"uint256"}],"name":"_updateHavePurchased","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"},{"internalType":"uint256","name":"_cost","type":"uint256"}],"name":"_updatePlayerValidatorCost","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_startTime","type":"uint256"},{"internalType":"uint256","name":"_endTime","type":"uint256"},{"internalType":"uint256","name":"_totalReward","type":"uint256"}],"name":"addBoostReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"admin","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"boostRewardDebt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"boostRewards","outputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"totalReward","type":"uint256"},{"internalType":"uint256","name":"accTokenPerShare","type":"uint256"},{"internalType":"uint256","name":"lastUpdatedTime","type":"uint256"},{"internalType":"bool","name":"isActive","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_newOwner","type":"address"}],"name":"changeValidatorOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_lockDuration","type":"uint256"}],"name":"createLock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"currentBoostRewardPeriodIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currentRewardPeriodIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"depositFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_lockDuration","type":"uint256"}],"name":"extendDuration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_userAddress","type":"address"}],"name":"getAmountAndAutoMax","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentBoostPeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentBoostReward","outputs":[{"internalType":"uint256","name":"totalReward","type":"uint256"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentPeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_userAddress","type":"address"}],"name":"getUserBoostReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"getUserInfo","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"lockStartTime","type":"uint256"},{"internalType":"uint256","name":"lockEndTime","type":"uint256"},{"internalType":"uint256","name":"baseReward","type":"uint256"},{"internalType":"uint256","name":"veLRDSBalance","type":"uint256"},{"internalType":"bool","name":"autoMax","type":"bool"},{"internalType":"uint256","name":"boostReward","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_userAddress","type":"address"}],"name":"getUserPendingReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getValidatorRewards","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getValidatorStats","outputs":[{"internalType":"uint256","name":"_totalStaked","type":"uint256"},{"internalType":"uint256","name":"_currentRewardStartTime","type":"uint256"},{"internalType":"uint256","name":"_currentRewardEndTime","type":"uint256"},{"internalType":"uint256","name":"_currentRewardTotal","type":"uint256"},{"internalType":"bool","name":"_isClaimed","type":"bool"},{"internalType":"uint256","name":"_AllocatedValidatorRewards","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"governance","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"havePurchased","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"increaseAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_admin","type":"address"},{"internalType":"address","name":"_owner","type":"address"},{"internalType":"uint256","name":"_validatorId","type":"uint256"},{"internalType":"uint256","name":"_quality","type":"uint256"},{"internalType":"address","name":"_verifier","type":"address"},{"internalType":"uint256","name":"_currentQualityCount","type":"uint256"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"masterValidator","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"playerValidatorCosts","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_np","type":"uint256"},{"internalType":"uint256","name":"_quality","type":"uint256"},{"internalType":"uint256","name":"_deadline","type":"uint256"},{"internalType":"uint8","name":"_v","type":"uint8"},{"internalType":"bytes32","name":"_r","type":"bytes32"},{"internalType":"bytes32","name":"_s","type":"bytes32"}],"name":"purchaseValidator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"quality","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rewardPeriods","outputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"totalReward","type":"uint256"},{"internalType":"uint256","name":"accTokenPerShare","type":"uint256"},{"internalType":"uint256","name":"lastRewardTime","type":"uint256"},{"internalType":"bool","name":"isActive","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_newAdmin","type":"address"}],"name":"setAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_bool","type":"bool"}],"name":"setAutoMax","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_fee","type":"uint256"}],"name":"setClaimFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_fee","type":"uint256"}],"name":"setDepositFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_governance","type":"address"}],"name":"setGovernance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_validator","type":"address"}],"name":"setMasterValidator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_newName","type":"string"}],"name":"setName","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newOwner","type":"address"}],"name":"setOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_paused","type":"bool"}],"name":"setPause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_startTime","type":"uint256"},{"internalType":"uint256","name":"_endTime","type":"uint256"},{"internalType":"uint256","name":"_totalReward","type":"uint256"}],"name":"setRewardPeriod","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_verifier","type":"address"}],"name":"setVerifier","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bool","name":"_fromBoost","type":"bool"}],"name":"stakeFor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalStaked","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userInfo","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"lockStartTime","type":"uint256"},{"internalType":"uint256","name":"lockEndTime","type":"uint256"},{"internalType":"uint256","name":"rewardDebt","type":"uint256"},{"internalType":"bool","name":"autoMax","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"validatorId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"veLrdsBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"verifier","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.