Source Code
Latest 7 from a total of 7 transactions
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
| Collect All Fees | 34852008 | 149 days ago | IN | 0 ETH | 0.00000275 | ||||
| Deploy Token | 34812850 | 150 days ago | IN | 0.00001 ETH | 0.00000901 | ||||
| Collect All Fees | 34807925 | 150 days ago | IN | 0 ETH | 0.00000302 | ||||
| Deploy Token | 34804043 | 150 days ago | IN | 0.0001 ETH | 0.00003215 | ||||
| Deploy Token | 34804015 | 150 days ago | IN | 0.1 ETH | 0.00004336 | ||||
| Deploy Token | 34803383 | 150 days ago | IN | 0.015 ETH | 0.00002875 | ||||
| Deploy Token | 34802815 | 150 days ago | IN | 0.0001 ETH | 0.00006883 |
Latest 10 internal transactions
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 34812850 | 150 days ago | 0.00001 ETH | ||||
| 34812850 | 150 days ago | Contract Creation | 0 ETH | |||
| 34804043 | 150 days ago | 0.0001 ETH | ||||
| 34804043 | 150 days ago | Contract Creation | 0 ETH | |||
| 34804015 | 150 days ago | 0.1 ETH | ||||
| 34804015 | 150 days ago | Contract Creation | 0 ETH | |||
| 34803383 | 150 days ago | 0.015 ETH | ||||
| 34803383 | 150 days ago | Contract Creation | 0 ETH | |||
| 34802815 | 150 days ago | 0.0001 ETH | ||||
| 34802815 | 150 days ago | Contract Creation | 0 ETH |
Cross-Chain Transactions
Loading...
Loading
This contract contains unverified libraries: LesterMathLib
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Name:
Lester
Compiler Version
v0.8.27+commit.40a35a09
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT AND UNLICENSED
pragma solidity ^0.8.25;
// Website: https://lestervirtuals.xyz
// Twitter: https://x.com/lestervirtuals
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {Create2} from "@openzeppelin/contracts/utils/Create2.sol";
import {INonfungiblePositionManager, IUniswapV3Factory, ISwapRouter, IUniswapV3Pool} from "./interface.sol";
import {Bytes32AddressLib} from "./Bytes32AddressLib.sol";
import "./LesterMathLib.sol";
import "./Token.sol";
contract Lester is Ownable {
using LesterMathLib for uint256;
using LesterMathLib for int24;
using Bytes32AddressLib for bytes32;
error InvalidTokenOrder();
error AddressAlreadyInTeam();
error AddressNotInTeam();
address public immutable weth = 0x4200000000000000000000000000000000000006;
address public immutable usdc = 0x833589fCD6eDb6E08f4c7C32D4f71b54bdA02913;
address public immutable DEAD_ADDRESS = 0x000000000000000000000000000000000000dEaD;
address[] public tokenList;
mapping(address => uint256[]) public tokenPositions;
// Team management
mapping(address => bool) public isTeamMember;
address[] public teamMembers;
IUniswapV3Factory public immutable uniswapV3Factory;
INonfungiblePositionManager public immutable positionManager;
address public immutable swapRouter;
int24 public constant TICK_SPACING = 200;
event TokenCreated(
address tokenAddress,
address deployer,
string name,
string symbol,
uint256 supply
);
event Debug(string message);
event CreationStatusChanged(bool enabled);
event TeamMemberAdded(address member);
event TeamMemberRemoved(address member);
bool public isCreationEnabled = true;
modifier whenCreationEnabled() {
require(isCreationEnabled, "Token creation is disabled");
_;
}
modifier onlyLesterTeam() {
require(isTeamMember[msg.sender] || msg.sender == owner(), "Not a team member");
_;
}
constructor(
address weth_,
address uniswapV3Factory_,
address positionManager_,
address swapRouter_,
address owner_
) Ownable(owner_) {
weth = weth_;
uniswapV3Factory = IUniswapV3Factory(uniswapV3Factory_);
positionManager = INonfungiblePositionManager(positionManager_);
swapRouter = swapRouter_;
}
function setCreationEnabled(bool enabled) external onlyLesterTeam {
isCreationEnabled = enabled;
emit CreationStatusChanged(enabled);
}
function calculateNumerator(uint256 supply, uint256 liquidity) public pure returns (uint256) {
return LesterMathLib.calculateNumerator(supply, liquidity);
}
function calculateTickFromNumerator(uint256 numerator) public pure returns (int256) {
return LesterMathLib.calculateTickFromNumerator(numerator);
}
function deployToken(
string memory name,
string memory symbol,
uint256 supply,
uint256 liquidity,
uint24 fee,
bytes32 salt,
address deployer,
uint256 maxWalletPercentage,
uint256 firstBuyAmount,
string memory twitterName,
string memory websiteUrl
) external payable whenCreationEnabled {
require(supply > 0, "Supply must be greater than 0");
require(deployer != address(0), "Invalid deployer address");
require(bytes(name).length > 0, "Name cannot be empty");
require(bytes(symbol).length > 0, "Symbol cannot be empty");
require(fee == 10000, "Invalid fee tier");
require(bytes(twitterName).length > 0, "Twitter name cannot be empty");
require(msg.value >= firstBuyAmount, "Insufficient ETH sent");
string memory finalName = string(abi.encodePacked(name, " by Lester"));
uint256 priceToken = calculateNumerator(supply, liquidity);
int256 tick = calculateTickFromNumerator(priceToken);
require(tick > 0, "Price < 0");
int24 tickSpacing = uniswapV3Factory.feeAmountTickSpacing(fee);
int24 maxTick = LesterMathLib.maxUsableTick(tickSpacing);
int24 currentTick = -int24(int256(tick));
if (currentTick % tickSpacing != 0) {
currentTick = int24((currentTick / tickSpacing) * tickSpacing);
}
bytes32 create2Salt = salt;
Token token = new Token{salt: create2Salt}(
finalName,
symbol,
supply,
deployer,
address(uniswapV3Factory),
address(positionManager),
maxWalletPercentage,
twitterName,
websiteUrl
);
require(address(token) < weth, "Token address must be less than WETH");
address pool = uniswapV3Factory.getPool(address(token), weth, fee);
uint160 sqrtPriceX96 = LesterMathLib.getSqrtRatioAtTick(currentTick);
if (pool == address(0)) {
pool = uniswapV3Factory.createPool(address(token), weth, fee);
IUniswapV3Pool(pool).initialize(sqrtPriceX96);
}
require(uniswapV3Factory.getPool(address(token), weth, fee) == pool, "Pool not created");
token.setPoolAddress(address(pool));
token.approve(address(positionManager), type(uint256).max);
token.transfer(address(this), supply);
INonfungiblePositionManager.MintParams memory params = INonfungiblePositionManager.MintParams({
token0: address(token),
token1: weth,
fee: fee,
tickLower: currentTick,
tickUpper: maxTick,
amount0Desired: supply,
amount1Desired: 0,
amount0Min: 0,
amount1Min: 0,
recipient: address(this),
deadline: block.timestamp + 60
});
(uint256 tokenId, , , ) = positionManager.mint(params);
_addTokenPosition(address(token), tokenId);
token.approve(address(positionManager), type(uint256).max);
IWETH(weth).deposit{value: firstBuyAmount}();
require(IERC20(weth).approve(swapRouter, firstBuyAmount), "Approve failed");
ISwapRouter(swapRouter).exactInputSingle(
ISwapRouter.ExactInputSingleParams({
tokenIn: weth,
tokenOut: address(token),
fee: fee,
recipient: msg.sender,
amountIn: firstBuyAmount,
amountOutMinimum: 0,
sqrtPriceLimitX96: 0
})
);
if (msg.value > firstBuyAmount) {
(bool success, ) = msg.sender.call{value: msg.value - firstBuyAmount}("");
require(success, "ETH refund failed");
}
emit TokenCreated(
address(token),
deployer,
name,
symbol,
supply
);
}
function predictToken(
address deployer,
string calldata name,
string calldata symbol,
uint256 supply,
bytes32 salt,
uint256 maxWalletPercentage,
string calldata twitterName,
string calldata websiteUrl
) public view returns (address) {
string memory finalName = string(abi.encodePacked(name, " by Lester"));
bytes memory bytecode = abi.encodePacked(
type(Token).creationCode,
abi.encode(
finalName,
symbol,
supply,
deployer,
address(uniswapV3Factory),
address(positionManager),
maxWalletPercentage,
twitterName,
websiteUrl
)
);
return Create2.computeAddress(
salt,
keccak256(bytecode),
address(this)
);
}
function generateSalt(
address deployer,
string calldata name,
string calldata symbol,
uint256 supply,
uint256 maxWalletPercentage,
string calldata twitterName,
string calldata websiteUrl
) external view returns (bytes32 salt, address token) {
uint256 i = 0;
while (true) {
bytes32 baseSalt = bytes32(i);
token = predictToken(
deployer,
name,
symbol,
supply,
baseSalt,
maxWalletPercentage,
twitterName,
websiteUrl
);
if (uint160(token) < uint160(weth) && token.code.length == 0) {
salt = baseSalt;
break;
}
i++;
require(i < 1000, "Could not find valid salt");
}
}
function _addTokenPosition(address token, uint256 tokenId) internal {
tokenPositions[token].push(tokenId);
tokenList.push(token);
}
function collectFees(address token) public onlyLesterTeam {
uint256[] memory positions = tokenPositions[token];
require(positions.length > 0, "No positions for this token");
positionManager.approve(owner(), positions[0]);
for (uint i = 0; i < positions.length; i++) {
uint256 tokenId = positions[i];
INonfungiblePositionManager.CollectParams memory params = INonfungiblePositionManager.CollectParams({
tokenId: tokenId,
recipient: owner(),
amount0Max: type(uint128).max,
amount1Max: type(uint128).max
});
positionManager.collect(params);
}
}
function collectAllFees() public onlyLesterTeam {
address[] memory tokens = new address[](tokenList.length);
uint256 count = 0;
for (uint i = 0; i < tokenList.length; i++) {
if (tokenPositions[tokenList[i]].length > 0) {
tokens[count] = tokenList[i];
count++;
}
}
for (uint i = 0; i < count; i++) {
collectFees(tokens[i]);
}
}
function addTeamMember(address member) external onlyOwner {
if (isTeamMember[member]) revert AddressAlreadyInTeam();
isTeamMember[member] = true;
teamMembers.push(member);
emit TeamMemberAdded(member);
}
function removeTeamMember(address member) external onlyOwner {
if (!isTeamMember[member]) revert AddressNotInTeam();
isTeamMember[member] = false;
// Remove from array
for (uint256 i = 0; i < teamMembers.length; i++) {
if (teamMembers[i] == member) {
teamMembers[i] = teamMembers[teamMembers.length - 1];
teamMembers.pop();
break;
}
}
emit TeamMemberRemoved(member);
}
function getTeamMembers() external view returns (address[] memory) {
return teamMembers;
}
receive() external payable {}
}
interface IWETH {
function deposit() external payable;
function withdraw(uint256) external;
function approve(address guy, uint256 wad) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Skips emitting an {Approval} event indicating an allowance update. This is not
* required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
*
* ```solidity
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
* `CREATE2` can be used to compute in advance the address where a smart
* contract will be deployed, which allows for interesting new mechanisms known
* as 'counterfactual interactions'.
*
* See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
* information.
*/
library Create2 {
/**
* @dev There's no code to deploy.
*/
error Create2EmptyBytecode();
/**
* @dev Deploys a contract using `CREATE2`. The address where the contract
* will be deployed can be known in advance via {computeAddress}.
*
* The bytecode for a contract can be obtained from Solidity with
* `type(contractName).creationCode`.
*
* Requirements:
*
* - `bytecode` must not be empty.
* - `salt` must have not been used for `bytecode` already.
* - the factory must have a balance of at least `amount`.
* - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
*/
function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
if (bytecode.length == 0) {
revert Create2EmptyBytecode();
}
assembly ("memory-safe") {
addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
// if no address was created, and returndata is not empty, bubble revert
if and(iszero(addr), not(iszero(returndatasize()))) {
let p := mload(0x40)
returndatacopy(p, 0, returndatasize())
revert(p, returndatasize())
}
}
if (addr == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
* `bytecodeHash` or `salt` will result in a new destination address.
*/
function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
return computeAddress(salt, bytecodeHash, address(this));
}
/**
* @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
* `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
*/
function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
assembly ("memory-safe") {
let ptr := mload(0x40) // Get free memory pointer
// | | ↓ ptr ... ↓ ptr + 0x0B (start) ... ↓ ptr + 0x20 ... ↓ ptr + 0x40 ... |
// |-------------------|---------------------------------------------------------------------------|
// | bytecodeHash | CCCCCCCCCCCCC...CC |
// | salt | BBBBBBBBBBBBB...BB |
// | deployer | 000000...0000AAAAAAAAAAAAAAAAAAA...AA |
// | 0xFF | FF |
// |-------------------|---------------------------------------------------------------------------|
// | memory | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
// | keccak(start, 85) | ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |
mstore(add(ptr, 0x40), bytecodeHash)
mstore(add(ptr, 0x20), salt)
mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
mstore8(start, 0xff)
addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
// Common.sol
//
// Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not
// always operate with SD59x18 and UD60x18 numbers.
/*//////////////////////////////////////////////////////////////////////////
CUSTOM ERRORS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Thrown when the resultant value in {mulDiv} overflows uint256.
error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator);
/// @notice Thrown when the resultant value in {mulDiv18} overflows uint256.
error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y);
/// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`.
error PRBMath_MulDivSigned_InputTooSmall();
/// @notice Thrown when the resultant value in {mulDivSigned} overflows int256.
error PRBMath_MulDivSigned_Overflow(int256 x, int256 y);
/*//////////////////////////////////////////////////////////////////////////
CONSTANTS
//////////////////////////////////////////////////////////////////////////*/
/// @dev The maximum value a uint128 number can have.
uint128 constant MAX_UINT128 = type(uint128).max;
/// @dev The maximum value a uint40 number can have.
uint40 constant MAX_UINT40 = type(uint40).max;
/// @dev The maximum value a uint64 number can have.
uint64 constant MAX_UINT64 = type(uint64).max;
/// @dev The unit number, which the decimal precision of the fixed-point types.
uint256 constant UNIT = 1e18;
/// @dev The unit number inverted mod 2^256.
uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281;
/// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant
/// bit in the binary representation of `UNIT`.
uint256 constant UNIT_LPOTD = 262144;
/*//////////////////////////////////////////////////////////////////////////
FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function exp2(uint256 x) pure returns (uint256 result) {
unchecked {
// Start from 0.5 in the 192.64-bit fixed-point format.
result = 0x800000000000000000000000000000000000000000000000;
// The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points:
//
// 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65.
// 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing
// a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1,
// we know that `x & 0xFF` is also 1.
if (x & 0xFF00000000000000 > 0) {
if (x & 0x8000000000000000 > 0) {
result = (result * 0x16A09E667F3BCC909) >> 64;
}
if (x & 0x4000000000000000 > 0) {
result = (result * 0x1306FE0A31B7152DF) >> 64;
}
if (x & 0x2000000000000000 > 0) {
result = (result * 0x1172B83C7D517ADCE) >> 64;
}
if (x & 0x1000000000000000 > 0) {
result = (result * 0x10B5586CF9890F62A) >> 64;
}
if (x & 0x800000000000000 > 0) {
result = (result * 0x1059B0D31585743AE) >> 64;
}
if (x & 0x400000000000000 > 0) {
result = (result * 0x102C9A3E778060EE7) >> 64;
}
if (x & 0x200000000000000 > 0) {
result = (result * 0x10163DA9FB33356D8) >> 64;
}
if (x & 0x100000000000000 > 0) {
result = (result * 0x100B1AFA5ABCBED61) >> 64;
}
}
if (x & 0xFF000000000000 > 0) {
if (x & 0x80000000000000 > 0) {
result = (result * 0x10058C86DA1C09EA2) >> 64;
}
if (x & 0x40000000000000 > 0) {
result = (result * 0x1002C605E2E8CEC50) >> 64;
}
if (x & 0x20000000000000 > 0) {
result = (result * 0x100162F3904051FA1) >> 64;
}
if (x & 0x10000000000000 > 0) {
result = (result * 0x1000B175EFFDC76BA) >> 64;
}
if (x & 0x8000000000000 > 0) {
result = (result * 0x100058BA01FB9F96D) >> 64;
}
if (x & 0x4000000000000 > 0) {
result = (result * 0x10002C5CC37DA9492) >> 64;
}
if (x & 0x2000000000000 > 0) {
result = (result * 0x1000162E525EE0547) >> 64;
}
if (x & 0x1000000000000 > 0) {
result = (result * 0x10000B17255775C04) >> 64;
}
}
if (x & 0xFF0000000000 > 0) {
if (x & 0x800000000000 > 0) {
result = (result * 0x1000058B91B5BC9AE) >> 64;
}
if (x & 0x400000000000 > 0) {
result = (result * 0x100002C5C89D5EC6D) >> 64;
}
if (x & 0x200000000000 > 0) {
result = (result * 0x10000162E43F4F831) >> 64;
}
if (x & 0x100000000000 > 0) {
result = (result * 0x100000B1721BCFC9A) >> 64;
}
if (x & 0x80000000000 > 0) {
result = (result * 0x10000058B90CF1E6E) >> 64;
}
if (x & 0x40000000000 > 0) {
result = (result * 0x1000002C5C863B73F) >> 64;
}
if (x & 0x20000000000 > 0) {
result = (result * 0x100000162E430E5A2) >> 64;
}
if (x & 0x10000000000 > 0) {
result = (result * 0x1000000B172183551) >> 64;
}
}
if (x & 0xFF00000000 > 0) {
if (x & 0x8000000000 > 0) {
result = (result * 0x100000058B90C0B49) >> 64;
}
if (x & 0x4000000000 > 0) {
result = (result * 0x10000002C5C8601CC) >> 64;
}
if (x & 0x2000000000 > 0) {
result = (result * 0x1000000162E42FFF0) >> 64;
}
if (x & 0x1000000000 > 0) {
result = (result * 0x10000000B17217FBB) >> 64;
}
if (x & 0x800000000 > 0) {
result = (result * 0x1000000058B90BFCE) >> 64;
}
if (x & 0x400000000 > 0) {
result = (result * 0x100000002C5C85FE3) >> 64;
}
if (x & 0x200000000 > 0) {
result = (result * 0x10000000162E42FF1) >> 64;
}
if (x & 0x100000000 > 0) {
result = (result * 0x100000000B17217F8) >> 64;
}
}
if (x & 0xFF000000 > 0) {
if (x & 0x80000000 > 0) {
result = (result * 0x10000000058B90BFC) >> 64;
}
if (x & 0x40000000 > 0) {
result = (result * 0x1000000002C5C85FE) >> 64;
}
if (x & 0x20000000 > 0) {
result = (result * 0x100000000162E42FF) >> 64;
}
if (x & 0x10000000 > 0) {
result = (result * 0x1000000000B17217F) >> 64;
}
if (x & 0x8000000 > 0) {
result = (result * 0x100000000058B90C0) >> 64;
}
if (x & 0x4000000 > 0) {
result = (result * 0x10000000002C5C860) >> 64;
}
if (x & 0x2000000 > 0) {
result = (result * 0x1000000000162E430) >> 64;
}
if (x & 0x1000000 > 0) {
result = (result * 0x10000000000B17218) >> 64;
}
}
if (x & 0xFF0000 > 0) {
if (x & 0x800000 > 0) {
result = (result * 0x1000000000058B90C) >> 64;
}
if (x & 0x400000 > 0) {
result = (result * 0x100000000002C5C86) >> 64;
}
if (x & 0x200000 > 0) {
result = (result * 0x10000000000162E43) >> 64;
}
if (x & 0x100000 > 0) {
result = (result * 0x100000000000B1721) >> 64;
}
if (x & 0x80000 > 0) {
result = (result * 0x10000000000058B91) >> 64;
}
if (x & 0x40000 > 0) {
result = (result * 0x1000000000002C5C8) >> 64;
}
if (x & 0x20000 > 0) {
result = (result * 0x100000000000162E4) >> 64;
}
if (x & 0x10000 > 0) {
result = (result * 0x1000000000000B172) >> 64;
}
}
if (x & 0xFF00 > 0) {
if (x & 0x8000 > 0) {
result = (result * 0x100000000000058B9) >> 64;
}
if (x & 0x4000 > 0) {
result = (result * 0x10000000000002C5D) >> 64;
}
if (x & 0x2000 > 0) {
result = (result * 0x1000000000000162E) >> 64;
}
if (x & 0x1000 > 0) {
result = (result * 0x10000000000000B17) >> 64;
}
if (x & 0x800 > 0) {
result = (result * 0x1000000000000058C) >> 64;
}
if (x & 0x400 > 0) {
result = (result * 0x100000000000002C6) >> 64;
}
if (x & 0x200 > 0) {
result = (result * 0x10000000000000163) >> 64;
}
if (x & 0x100 > 0) {
result = (result * 0x100000000000000B1) >> 64;
}
}
if (x & 0xFF > 0) {
if (x & 0x80 > 0) {
result = (result * 0x10000000000000059) >> 64;
}
if (x & 0x40 > 0) {
result = (result * 0x1000000000000002C) >> 64;
}
if (x & 0x20 > 0) {
result = (result * 0x10000000000000016) >> 64;
}
if (x & 0x10 > 0) {
result = (result * 0x1000000000000000B) >> 64;
}
if (x & 0x8 > 0) {
result = (result * 0x10000000000000006) >> 64;
}
if (x & 0x4 > 0) {
result = (result * 0x10000000000000003) >> 64;
}
if (x & 0x2 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
if (x & 0x1 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
}
// In the code snippet below, two operations are executed simultaneously:
//
// 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1
// accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192.
// 2. The result is then converted to an unsigned 60.18-decimal fixed-point format.
//
// The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the,
// integer part, $2^n$.
result *= UNIT;
result >>= (191 - (x >> 64));
}
}
/// @notice Finds the zero-based index of the first 1 in the binary representation of x.
///
/// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set
///
/// Each step in this implementation is equivalent to this high-level code:
///
/// ```solidity
/// if (x >= 2 ** 128) {
/// x >>= 128;
/// result += 128;
/// }
/// ```
///
/// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here:
/// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948
///
/// The Yul instructions used below are:
///
/// - "gt" is "greater than"
/// - "or" is the OR bitwise operator
/// - "shl" is "shift left"
/// - "shr" is "shift right"
///
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return result The index of the most significant bit as a uint256.
/// @custom:smtchecker abstract-function-nondet
function msb(uint256 x) pure returns (uint256 result) {
// 2^128
assembly ("memory-safe") {
let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^64
assembly ("memory-safe") {
let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^32
assembly ("memory-safe") {
let factor := shl(5, gt(x, 0xFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^16
assembly ("memory-safe") {
let factor := shl(4, gt(x, 0xFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^8
assembly ("memory-safe") {
let factor := shl(3, gt(x, 0xFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^4
assembly ("memory-safe") {
let factor := shl(2, gt(x, 0xF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^2
assembly ("memory-safe") {
let factor := shl(1, gt(x, 0x3))
x := shr(factor, x)
result := or(result, factor)
}
// 2^1
// No need to shift x any more.
assembly ("memory-safe") {
let factor := gt(x, 0x1)
result := or(result, factor)
}
}
/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - The denominator must not be zero.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as a uint256.
/// @param y The multiplier as a uint256.
/// @param denominator The divisor as a uint256.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
unchecked {
return prod0 / denominator;
}
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (prod1 >= denominator) {
revert PRBMath_MulDiv_Overflow(x, y, denominator);
}
////////////////////////////////////////////////////////////////////////////
// 512 by 256 division
////////////////////////////////////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using the mulmod Yul instruction.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512-bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
unchecked {
// Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow
// because the denominator cannot be zero at this point in the function execution. The result is always >= 1.
// For more detail, see https://cs.stackexchange.com/q/138556/92363.
uint256 lpotdod = denominator & (~denominator + 1);
uint256 flippedLpotdod;
assembly ("memory-safe") {
// Factor powers of two out of denominator.
denominator := div(denominator, lpotdod)
// Divide [prod1 prod0] by lpotdod.
prod0 := div(prod0, lpotdod)
// Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one.
// `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits.
// However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693
flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * flippedLpotdod;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
}
}
/// @notice Calculates x*y÷1e18 with 512-bit precision.
///
/// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18.
///
/// Notes:
/// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}.
/// - The result is rounded toward zero.
/// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations:
///
/// $$
/// \begin{cases}
/// x * y = MAX\_UINT256 * UNIT \\
/// (x * y) \% UNIT \geq \frac{UNIT}{2}
/// \end{cases}
/// $$
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) {
uint256 prod0;
uint256 prod1;
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
if (prod1 == 0) {
unchecked {
return prod0 / UNIT;
}
}
if (prod1 >= UNIT) {
revert PRBMath_MulDiv18_Overflow(x, y);
}
uint256 remainder;
assembly ("memory-safe") {
remainder := mulmod(x, y, UNIT)
result :=
mul(
or(
div(sub(prod0, remainder), UNIT_LPOTD),
mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1))
),
UNIT_INVERSE
)
}
}
/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - None of the inputs can be `type(int256).min`.
/// - The result must fit in int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
/// @custom:smtchecker abstract-function-nondet
function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) {
if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
revert PRBMath_MulDivSigned_InputTooSmall();
}
// Get hold of the absolute values of x, y and the denominator.
uint256 xAbs;
uint256 yAbs;
uint256 dAbs;
unchecked {
xAbs = x < 0 ? uint256(-x) : uint256(x);
yAbs = y < 0 ? uint256(-y) : uint256(y);
dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator);
}
// Compute the absolute value of x*y÷denominator. The result must fit in int256.
uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs);
if (resultAbs > uint256(type(int256).max)) {
revert PRBMath_MulDivSigned_Overflow(x, y);
}
// Get the signs of x, y and the denominator.
uint256 sx;
uint256 sy;
uint256 sd;
assembly ("memory-safe") {
// "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement.
sx := sgt(x, sub(0, 1))
sy := sgt(y, sub(0, 1))
sd := sgt(denominator, sub(0, 1))
}
// XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs.
// If there are, the result should be negative. Otherwise, it should be positive.
unchecked {
result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs);
}
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - If x is not a perfect square, the result is rounded down.
/// - Credits to OpenZeppelin for the explanations in comments below.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function sqrt(uint256 x) pure returns (uint256 result) {
if (x == 0) {
return 0;
}
// For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x.
//
// We know that the "msb" (most significant bit) of x is a power of 2 such that we have:
//
// $$
// msb(x) <= x <= 2*msb(x)$
// $$
//
// We write $msb(x)$ as $2^k$, and we get:
//
// $$
// k = log_2(x)
// $$
//
// Thus, we can write the initial inequality as:
//
// $$
// 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\
// sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\
// 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1}
// $$
//
// Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit.
uint256 xAux = uint256(x);
result = 1;
if (xAux >= 2 ** 128) {
xAux >>= 128;
result <<= 64;
}
if (xAux >= 2 ** 64) {
xAux >>= 64;
result <<= 32;
}
if (xAux >= 2 ** 32) {
xAux >>= 32;
result <<= 16;
}
if (xAux >= 2 ** 16) {
xAux >>= 16;
result <<= 8;
}
if (xAux >= 2 ** 8) {
xAux >>= 8;
result <<= 4;
}
if (xAux >= 2 ** 4) {
xAux >>= 4;
result <<= 2;
}
if (xAux >= 2 ** 2) {
result <<= 1;
}
// At this point, `result` is an estimation with at least one bit of precision. We know the true value has at
// most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision
// doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of
// precision into the expected uint128 result.
unchecked {
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
// If x is not a perfect square, round the result toward zero.
uint256 roundedResult = x / result;
if (result >= roundedResult) {
result = roundedResult;
}
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as CastingErrors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD1x18 } from "./ValueType.sol";
/// @notice Casts an SD1x18 number into SD59x18.
/// @dev There is no overflow check because SD1x18 ⊆ SD59x18.
function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(int256(SD1x18.unwrap(x)));
}
/// @notice Casts an SD1x18 number into UD60x18.
/// @dev Requirements:
/// - x ≥ 0
function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x);
}
result = UD60x18.wrap(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint128.
/// @dev Requirements:
/// - x ≥ 0
function intoUint128(SD1x18 x) pure returns (uint128 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x);
}
result = uint128(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint256.
/// @dev Requirements:
/// - x ≥ 0
function intoUint256(SD1x18 x) pure returns (uint256 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x);
}
result = uint256(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint40.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ MAX_UINT40
function intoUint40(SD1x18 x) pure returns (uint40 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x);
}
if (xInt > int64(uint64(Common.MAX_UINT40))) {
revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x);
}
result = uint40(uint64(xInt));
}
/// @notice Alias for {wrap}.
function sd1x18(int64 x) pure returns (SD1x18 result) {
result = SD1x18.wrap(x);
}
/// @notice Unwraps an SD1x18 number into int64.
function unwrap(SD1x18 x) pure returns (int64 result) {
result = SD1x18.unwrap(x);
}
/// @notice Wraps an int64 number into SD1x18.
function wrap(int64 x) pure returns (SD1x18 result) {
result = SD1x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD1x18 } from "./ValueType.sol";
/// @dev Euler's number as an SD1x18 number.
SD1x18 constant E = SD1x18.wrap(2_718281828459045235);
/// @dev The maximum value an SD1x18 number can have.
int64 constant uMAX_SD1x18 = 9_223372036854775807;
SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18);
/// @dev The minimum value an SD1x18 number can have.
int64 constant uMIN_SD1x18 = -9_223372036854775808;
SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18);
/// @dev PI as an SD1x18 number.
SD1x18 constant PI = SD1x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of SD1x18.
SD1x18 constant UNIT = SD1x18.wrap(1e18);
int64 constant uUNIT = 1e18;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD1x18 } from "./ValueType.sol";
/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in UD60x18.
error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x);
/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in uint128.
error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x);
/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in uint256.
error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x);
/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x);
/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
/// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract
/// storage.
type SD1x18 is int64;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD59x18,
Casting.intoUD60x18,
Casting.intoUint128,
Casting.intoUint256,
Casting.intoUint40,
Casting.unwrap
} for SD1x18 global;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as CastingErrors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD21x18 } from "./ValueType.sol";
/// @notice Casts an SD21x18 number into SD59x18.
/// @dev There is no overflow check because SD21x18 ⊆ SD59x18.
function intoSD59x18(SD21x18 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(int256(SD21x18.unwrap(x)));
}
/// @notice Casts an SD21x18 number into UD60x18.
/// @dev Requirements:
/// - x ≥ 0
function intoUD60x18(SD21x18 x) pure returns (UD60x18 result) {
int128 xInt = SD21x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD21x18_ToUD60x18_Underflow(x);
}
result = UD60x18.wrap(uint128(xInt));
}
/// @notice Casts an SD21x18 number into uint128.
/// @dev Requirements:
/// - x ≥ 0
function intoUint128(SD21x18 x) pure returns (uint128 result) {
int128 xInt = SD21x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD21x18_ToUint128_Underflow(x);
}
result = uint128(xInt);
}
/// @notice Casts an SD21x18 number into uint256.
/// @dev Requirements:
/// - x ≥ 0
function intoUint256(SD21x18 x) pure returns (uint256 result) {
int128 xInt = SD21x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD21x18_ToUint256_Underflow(x);
}
result = uint256(uint128(xInt));
}
/// @notice Casts an SD21x18 number into uint40.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ MAX_UINT40
function intoUint40(SD21x18 x) pure returns (uint40 result) {
int128 xInt = SD21x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD21x18_ToUint40_Underflow(x);
}
if (xInt > int128(uint128(Common.MAX_UINT40))) {
revert CastingErrors.PRBMath_SD21x18_ToUint40_Overflow(x);
}
result = uint40(uint128(xInt));
}
/// @notice Alias for {wrap}.
function sd21x18(int128 x) pure returns (SD21x18 result) {
result = SD21x18.wrap(x);
}
/// @notice Unwraps an SD21x18 number into int128.
function unwrap(SD21x18 x) pure returns (int128 result) {
result = SD21x18.unwrap(x);
}
/// @notice Wraps an int128 number into SD21x18.
function wrap(int128 x) pure returns (SD21x18 result) {
result = SD21x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD21x18 } from "./ValueType.sol";
/// @dev Euler's number as an SD21x18 number.
SD21x18 constant E = SD21x18.wrap(2_718281828459045235);
/// @dev The maximum value an SD21x18 number can have.
int128 constant uMAX_SD21x18 = 170141183460469231731_687303715884105727;
SD21x18 constant MAX_SD21x18 = SD21x18.wrap(uMAX_SD21x18);
/// @dev The minimum value an SD21x18 number can have.
int128 constant uMIN_SD21x18 = -170141183460469231731_687303715884105728;
SD21x18 constant MIN_SD21x18 = SD21x18.wrap(uMIN_SD21x18);
/// @dev PI as an SD21x18 number.
SD21x18 constant PI = SD21x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of SD21x18.
SD21x18 constant UNIT = SD21x18.wrap(1e18);
int128 constant uUNIT = 1e18;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD21x18 } from "./ValueType.sol";
/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in uint128.
error PRBMath_SD21x18_ToUint128_Underflow(SD21x18 x);
/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in UD60x18.
error PRBMath_SD21x18_ToUD60x18_Underflow(SD21x18 x);
/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in uint256.
error PRBMath_SD21x18_ToUint256_Underflow(SD21x18 x);
/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in uint40.
error PRBMath_SD21x18_ToUint40_Overflow(SD21x18 x);
/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in uint40.
error PRBMath_SD21x18_ToUint40_Underflow(SD21x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
/// @notice The signed 21.18-decimal fixed-point number representation, which can have up to 21 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int128. This is useful when end users want to use int128 to save gas, e.g. with tight variable packing in contract
/// storage.
type SD21x18 is int128;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD59x18,
Casting.intoUD60x18,
Casting.intoUint128,
Casting.intoUint256,
Casting.intoUint40,
Casting.unwrap
} for SD21x18 global;// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ███████╗██████╗ ███████╗ █████╗ ██╗ ██╗ ██╗ █████╗ ██╔════╝██╔══██╗██╔════╝██╔══██╗╚██╗██╔╝███║██╔══██╗ ███████╗██║ ██║███████╗╚██████║ ╚███╔╝ ╚██║╚█████╔╝ ╚════██║██║ ██║╚════██║ ╚═══██║ ██╔██╗ ██║██╔══██╗ ███████║██████╔╝███████║ █████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚══════╝╚═════╝ ╚══════╝ ╚════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./sd59x18/Casting.sol"; import "./sd59x18/Constants.sol"; import "./sd59x18/Conversions.sol"; import "./sd59x18/Errors.sol"; import "./sd59x18/Helpers.sol"; import "./sd59x18/Math.sol"; import "./sd59x18/ValueType.sol";
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_SD21x18, uMIN_SD21x18 } from "../sd21x18/Constants.sol";
import { SD21x18 } from "../sd21x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { uMAX_UD21x18 } from "../ud21x18/Constants.sol";
import { UD21x18 } from "../ud21x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD59x18 } from "./ValueType.sol";
/// @notice Casts an SD59x18 number into int256.
/// @dev This is basically a functional alias for {unwrap}.
function intoInt256(SD59x18 x) pure returns (int256 result) {
result = SD59x18.unwrap(x);
}
/// @notice Casts an SD59x18 number into SD1x18.
/// @dev Requirements:
/// - x ≥ uMIN_SD1x18
/// - x ≤ uMAX_SD1x18
function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < uMIN_SD1x18) {
revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x);
}
if (xInt > uMAX_SD1x18) {
revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x);
}
result = SD1x18.wrap(int64(xInt));
}
/// @notice Casts an SD59x18 number into SD21x18.
/// @dev Requirements:
/// - x ≥ uMIN_SD21x18
/// - x ≤ uMAX_SD21x18
function intoSD21x18(SD59x18 x) pure returns (SD21x18 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < uMIN_SD21x18) {
revert CastingErrors.PRBMath_SD59x18_IntoSD21x18_Underflow(x);
}
if (xInt > uMAX_SD21x18) {
revert CastingErrors.PRBMath_SD59x18_IntoSD21x18_Overflow(x);
}
result = SD21x18.wrap(int128(xInt));
}
/// @notice Casts an SD59x18 number into UD2x18.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ uMAX_UD2x18
function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x);
}
if (xInt > int256(uint256(uMAX_UD2x18))) {
revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x);
}
result = UD2x18.wrap(uint64(uint256(xInt)));
}
/// @notice Casts an SD59x18 number into UD21x18.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ uMAX_UD21x18
function intoUD21x18(SD59x18 x) pure returns (UD21x18 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUD21x18_Underflow(x);
}
if (xInt > int256(uint256(uMAX_UD21x18))) {
revert CastingErrors.PRBMath_SD59x18_IntoUD21x18_Overflow(x);
}
result = UD21x18.wrap(uint128(uint256(xInt)));
}
/// @notice Casts an SD59x18 number into UD60x18.
/// @dev Requirements:
/// - x ≥ 0
function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x);
}
result = UD60x18.wrap(uint256(xInt));
}
/// @notice Casts an SD59x18 number into uint256.
/// @dev Requirements:
/// - x ≥ 0
function intoUint256(SD59x18 x) pure returns (uint256 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x);
}
result = uint256(xInt);
}
/// @notice Casts an SD59x18 number into uint128.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ uMAX_UINT128
function intoUint128(SD59x18 x) pure returns (uint128 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x);
}
if (xInt > int256(uint256(MAX_UINT128))) {
revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x);
}
result = uint128(uint256(xInt));
}
/// @notice Casts an SD59x18 number into uint40.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ MAX_UINT40
function intoUint40(SD59x18 x) pure returns (uint40 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x);
}
if (xInt > int256(uint256(MAX_UINT40))) {
revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x);
}
result = uint40(uint256(xInt));
}
/// @notice Alias for {wrap}.
function sd(int256 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(x);
}
/// @notice Alias for {wrap}.
function sd59x18(int256 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(x);
}
/// @notice Unwraps an SD59x18 number into int256.
function unwrap(SD59x18 x) pure returns (int256 result) {
result = SD59x18.unwrap(x);
}
/// @notice Wraps an int256 number into SD59x18.
function wrap(int256 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD59x18 } from "./ValueType.sol";
// NOTICE: the "u" prefix stands for "unwrapped".
/// @dev Euler's number as an SD59x18 number.
SD59x18 constant E = SD59x18.wrap(2_718281828459045235);
/// @dev The maximum input permitted in {exp}.
int256 constant uEXP_MAX_INPUT = 133_084258667509499440;
SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT);
/// @dev Any value less than this returns 0 in {exp}.
int256 constant uEXP_MIN_THRESHOLD = -41_446531673892822322;
SD59x18 constant EXP_MIN_THRESHOLD = SD59x18.wrap(uEXP_MIN_THRESHOLD);
/// @dev The maximum input permitted in {exp2}.
int256 constant uEXP2_MAX_INPUT = 192e18 - 1;
SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT);
/// @dev Any value less than this returns 0 in {exp2}.
int256 constant uEXP2_MIN_THRESHOLD = -59_794705707972522261;
SD59x18 constant EXP2_MIN_THRESHOLD = SD59x18.wrap(uEXP2_MIN_THRESHOLD);
/// @dev Half the UNIT number.
int256 constant uHALF_UNIT = 0.5e18;
SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT);
/// @dev $log_2(10)$ as an SD59x18 number.
int256 constant uLOG2_10 = 3_321928094887362347;
SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10);
/// @dev $log_2(e)$ as an SD59x18 number.
int256 constant uLOG2_E = 1_442695040888963407;
SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E);
/// @dev The maximum value an SD59x18 number can have.
int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967;
SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18);
/// @dev The maximum whole value an SD59x18 number can have.
int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18);
/// @dev The minimum value an SD59x18 number can have.
int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968;
SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18);
/// @dev The minimum whole value an SD59x18 number can have.
int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18);
/// @dev PI as an SD59x18 number.
SD59x18 constant PI = SD59x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of SD59x18.
int256 constant uUNIT = 1e18;
SD59x18 constant UNIT = SD59x18.wrap(1e18);
/// @dev The unit number squared.
int256 constant uUNIT_SQUARED = 1e36;
SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED);
/// @dev Zero as an SD59x18 number.
SD59x18 constant ZERO = SD59x18.wrap(0);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { uMAX_SD59x18, uMIN_SD59x18, uUNIT } from "./Constants.sol";
import { PRBMath_SD59x18_Convert_Overflow, PRBMath_SD59x18_Convert_Underflow } from "./Errors.sol";
import { SD59x18 } from "./ValueType.sol";
/// @notice Converts a simple integer to SD59x18 by multiplying it by `UNIT`.
///
/// @dev Requirements:
/// - x ≥ `MIN_SD59x18 / UNIT`
/// - x ≤ `MAX_SD59x18 / UNIT`
///
/// @param x The basic integer to convert.
/// @return result The same number converted to SD59x18.
function convert(int256 x) pure returns (SD59x18 result) {
if (x < uMIN_SD59x18 / uUNIT) {
revert PRBMath_SD59x18_Convert_Underflow(x);
}
if (x > uMAX_SD59x18 / uUNIT) {
revert PRBMath_SD59x18_Convert_Overflow(x);
}
unchecked {
result = SD59x18.wrap(x * uUNIT);
}
}
/// @notice Converts an SD59x18 number to a simple integer by dividing it by `UNIT`.
/// @dev The result is rounded toward zero.
/// @param x The SD59x18 number to convert.
/// @return result The same number as a simple integer.
function convert(SD59x18 x) pure returns (int256 result) {
result = SD59x18.unwrap(x) / uUNIT;
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD59x18 } from "./ValueType.sol";
/// @notice Thrown when taking the absolute value of `MIN_SD59x18`.
error PRBMath_SD59x18_Abs_MinSD59x18();
/// @notice Thrown when ceiling a number overflows SD59x18.
error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x);
/// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMath_SD59x18_Convert_Overflow(int256 x);
/// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMath_SD59x18_Convert_Underflow(int256 x);
/// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`.
error PRBMath_SD59x18_Div_InputTooSmall();
/// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18.
error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x);
/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x);
/// @notice Thrown when flooring a number underflows SD59x18.
error PRBMath_SD59x18_Floor_Underflow(SD59x18 x);
/// @notice Thrown when taking the geometric mean of two numbers and their product is negative.
error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y);
/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18.
error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in SD21x18.
error PRBMath_SD59x18_IntoSD21x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in SD21x18.
error PRBMath_SD59x18_IntoSD21x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD21x18.
error PRBMath_SD59x18_IntoUD21x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD21x18.
error PRBMath_SD59x18_IntoUD21x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD60x18.
error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint256.
error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x);
/// @notice Thrown when taking the logarithm of a number less than or equal to zero.
error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x);
/// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`.
error PRBMath_SD59x18_Mul_InputTooSmall();
/// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when raising a number to a power and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y);
/// @notice Thrown when taking the square root of a negative number.
error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x);
/// @notice Thrown when the calculating the square root overflows SD59x18.
error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { wrap } from "./Casting.sol";
import { SD59x18 } from "./ValueType.sol";
/// @notice Implements the checked addition operation (+) in the SD59x18 type.
function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
return wrap(x.unwrap() + y.unwrap());
}
/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) {
return wrap(x.unwrap() & bits);
}
/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
return wrap(x.unwrap() & y.unwrap());
}
/// @notice Implements the equal (=) operation in the SD59x18 type.
function eq(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() == y.unwrap();
}
/// @notice Implements the greater than operation (>) in the SD59x18 type.
function gt(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() > y.unwrap();
}
/// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type.
function gte(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() >= y.unwrap();
}
/// @notice Implements a zero comparison check function in the SD59x18 type.
function isZero(SD59x18 x) pure returns (bool result) {
result = x.unwrap() == 0;
}
/// @notice Implements the left shift operation (<<) in the SD59x18 type.
function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
result = wrap(x.unwrap() << bits);
}
/// @notice Implements the lower than operation (<) in the SD59x18 type.
function lt(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() < y.unwrap();
}
/// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type.
function lte(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() <= y.unwrap();
}
/// @notice Implements the unchecked modulo operation (%) in the SD59x18 type.
function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
result = wrap(x.unwrap() % y.unwrap());
}
/// @notice Implements the not equal operation (!=) in the SD59x18 type.
function neq(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() != y.unwrap();
}
/// @notice Implements the NOT (~) bitwise operation in the SD59x18 type.
function not(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(~x.unwrap());
}
/// @notice Implements the OR (|) bitwise operation in the SD59x18 type.
function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
result = wrap(x.unwrap() | y.unwrap());
}
/// @notice Implements the right shift operation (>>) in the SD59x18 type.
function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
result = wrap(x.unwrap() >> bits);
}
/// @notice Implements the checked subtraction operation (-) in the SD59x18 type.
function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
result = wrap(x.unwrap() - y.unwrap());
}
/// @notice Implements the checked unary minus operation (-) in the SD59x18 type.
function unary(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(-x.unwrap());
}
/// @notice Implements the unchecked addition operation (+) in the SD59x18 type.
function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
unchecked {
result = wrap(x.unwrap() + y.unwrap());
}
}
/// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type.
function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
unchecked {
result = wrap(x.unwrap() - y.unwrap());
}
}
/// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type.
function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) {
unchecked {
result = wrap(-x.unwrap());
}
}
/// @notice Implements the XOR (^) bitwise operation in the SD59x18 type.
function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
result = wrap(x.unwrap() ^ y.unwrap());
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import {
uEXP_MAX_INPUT,
uEXP2_MAX_INPUT,
uEXP_MIN_THRESHOLD,
uEXP2_MIN_THRESHOLD,
uHALF_UNIT,
uLOG2_10,
uLOG2_E,
uMAX_SD59x18,
uMAX_WHOLE_SD59x18,
uMIN_SD59x18,
uMIN_WHOLE_SD59x18,
UNIT,
uUNIT,
uUNIT_SQUARED,
ZERO
} from "./Constants.sol";
import { wrap } from "./Helpers.sol";
import { SD59x18 } from "./ValueType.sol";
/// @notice Calculates the absolute value of x.
///
/// @dev Requirements:
/// - x > MIN_SD59x18.
///
/// @param x The SD59x18 number for which to calculate the absolute value.
/// @return result The absolute value of x as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function abs(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt == uMIN_SD59x18) {
revert Errors.PRBMath_SD59x18_Abs_MinSD59x18();
}
result = xInt < 0 ? wrap(-xInt) : x;
}
/// @notice Calculates the arithmetic average of x and y.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The arithmetic average as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
unchecked {
// This operation is equivalent to `x / 2 + y / 2`, and it can never overflow.
int256 sum = (xInt >> 1) + (yInt >> 1);
if (sum < 0) {
// If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right
// rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`.
assembly ("memory-safe") {
result := add(sum, and(or(xInt, yInt), 1))
}
} else {
// Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting.
result = wrap(sum + (xInt & yInt & 1));
}
}
}
/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x ≤ MAX_WHOLE_SD59x18
///
/// @param x The SD59x18 number to ceil.
/// @return result The smallest whole number greater than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt > uMAX_WHOLE_SD59x18) {
revert Errors.PRBMath_SD59x18_Ceil_Overflow(x);
}
int256 remainder = xInt % uUNIT;
if (remainder == 0) {
result = x;
} else {
unchecked {
// Solidity uses C fmod style, which returns a modulus with the same sign as x.
int256 resultInt = xInt - remainder;
if (xInt > 0) {
resultInt += uUNIT;
}
result = wrap(resultInt);
}
}
}
/// @notice Divides two SD59x18 numbers, returning a new SD59x18 number.
///
/// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute
/// values separately.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The denominator must not be zero.
/// - The result must fit in SD59x18.
///
/// @param x The numerator as an SD59x18 number.
/// @param y The denominator as an SD59x18 number.
/// @return result The quotient as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
revert Errors.PRBMath_SD59x18_Div_InputTooSmall();
}
// Get hold of the absolute values of x and y.
uint256 xAbs;
uint256 yAbs;
unchecked {
xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
}
// Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18.
uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs);
if (resultAbs > uint256(uMAX_SD59x18)) {
revert Errors.PRBMath_SD59x18_Div_Overflow(x, y);
}
// Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
// negative, 0 for positive or zero).
bool sameSign = (xInt ^ yInt) > -1;
// If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
unchecked {
result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
}
}
/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}.
///
/// Requirements:
/// - Refer to the requirements in {exp2}.
/// - x < 133_084258667509499441.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
// Any input less than the threshold returns zero.
// This check also prevents an overflow for very small numbers.
if (xInt < uEXP_MIN_THRESHOLD) {
return ZERO;
}
// This check prevents values greater than 192e18 from being passed to {exp2}.
if (xInt > uEXP_MAX_INPUT) {
revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x);
}
unchecked {
// Inline the fixed-point multiplication to save gas.
int256 doubleUnitProduct = xInt * uLOG2_E;
result = exp2(wrap(doubleUnitProduct / uUNIT));
}
}
/// @notice Calculates the binary exponent of x using the binary fraction method using the following formula:
///
/// $$
/// 2^{-x} = \frac{1}{2^x}
/// $$
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693.
///
/// Notes:
/// - If x < -59_794705707972522261, the result is zero.
///
/// Requirements:
/// - x < 192e18.
/// - The result must fit in SD59x18.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < 0) {
// The inverse of any number less than the threshold is truncated to zero.
if (xInt < uEXP2_MIN_THRESHOLD) {
return ZERO;
}
unchecked {
// Inline the fixed-point inversion to save gas.
result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap());
}
} else {
// Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
if (xInt > uEXP2_MAX_INPUT) {
revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x);
}
unchecked {
// Convert x to the 192.64-bit fixed-point format.
uint256 x_192x64 = uint256((xInt << 64) / uUNIT);
// It is safe to cast the result to int256 due to the checks above.
result = wrap(int256(Common.exp2(x_192x64)));
}
}
}
/// @notice Yields the greatest whole number less than or equal to x.
///
/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x ≥ MIN_WHOLE_SD59x18
///
/// @param x The SD59x18 number to floor.
/// @return result The greatest whole number less than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < uMIN_WHOLE_SD59x18) {
revert Errors.PRBMath_SD59x18_Floor_Underflow(x);
}
int256 remainder = xInt % uUNIT;
if (remainder == 0) {
result = x;
} else {
unchecked {
// Solidity uses C fmod style, which returns a modulus with the same sign as x.
int256 resultInt = xInt - remainder;
if (xInt < 0) {
resultInt -= uUNIT;
}
result = wrap(resultInt);
}
}
}
/// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right.
/// of the radix point for negative numbers.
/// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part
/// @param x The SD59x18 number to get the fractional part of.
/// @return result The fractional part of x as an SD59x18 number.
function frac(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(x.unwrap() % uUNIT);
}
/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x * y must fit in SD59x18.
/// - x * y must not be negative, since complex numbers are not supported.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
if (xInt == 0 || yInt == 0) {
return ZERO;
}
unchecked {
// Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it.
int256 xyInt = xInt * yInt;
if (xyInt / xInt != yInt) {
revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y);
}
// The product must not be negative, since complex numbers are not supported.
if (xyInt < 0) {
revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y);
}
// We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
// during multiplication. See the comments in {Common.sqrt}.
uint256 resultUint = Common.sqrt(uint256(xyInt));
result = wrap(int256(resultUint));
}
}
/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The SD59x18 number for which to calculate the inverse.
/// @return result The inverse as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(uUNIT_SQUARED / x.unwrap());
}
/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(SD59x18 x) pure returns (SD59x18 result) {
// Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
// {log2} can return is ~195_205294292027477728.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
}
/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < 0) {
revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
}
// Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}.
// prettier-ignore
assembly ("memory-safe") {
switch x
case 1 { result := mul(uUNIT, sub(0, 18)) }
case 10 { result := mul(uUNIT, sub(1, 18)) }
case 100 { result := mul(uUNIT, sub(2, 18)) }
case 1000 { result := mul(uUNIT, sub(3, 18)) }
case 10000 { result := mul(uUNIT, sub(4, 18)) }
case 100000 { result := mul(uUNIT, sub(5, 18)) }
case 1000000 { result := mul(uUNIT, sub(6, 18)) }
case 10000000 { result := mul(uUNIT, sub(7, 18)) }
case 100000000 { result := mul(uUNIT, sub(8, 18)) }
case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
case 1000000000000000000 { result := 0 }
case 10000000000000000000 { result := uUNIT }
case 100000000000000000000 { result := mul(uUNIT, 2) }
case 1000000000000000000000 { result := mul(uUNIT, 3) }
case 10000000000000000000000 { result := mul(uUNIT, 4) }
case 100000000000000000000000 { result := mul(uUNIT, 5) }
case 1000000000000000000000000 { result := mul(uUNIT, 6) }
case 10000000000000000000000000 { result := mul(uUNIT, 7) }
case 100000000000000000000000000 { result := mul(uUNIT, 8) }
case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
default { result := uMAX_SD59x18 }
}
if (result.unwrap() == uMAX_SD59x18) {
unchecked {
// Inline the fixed-point division to save gas.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
}
}
}
/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation.
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x > 0
///
/// @param x The SD59x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt <= 0) {
revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
}
unchecked {
int256 sign;
if (xInt >= uUNIT) {
sign = 1;
} else {
sign = -1;
// Inline the fixed-point inversion to save gas.
xInt = uUNIT_SQUARED / xInt;
}
// Calculate the integer part of the logarithm.
uint256 n = Common.msb(uint256(xInt / uUNIT));
// This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow
// because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1.
int256 resultInt = int256(n) * uUNIT;
// Calculate $y = x * 2^{-n}$.
int256 y = xInt >> n;
// If y is the unit number, the fractional part is zero.
if (y == uUNIT) {
return wrap(resultInt * sign);
}
// Calculate the fractional part via the iterative approximation.
// The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
int256 DOUBLE_UNIT = 2e18;
for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
y = (y * y) / uUNIT;
// Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
if (y >= DOUBLE_UNIT) {
// Add the 2^{-m} factor to the logarithm.
resultInt = resultInt + delta;
// Halve y, which corresponds to z/2 in the Wikipedia article.
y >>= 1;
}
}
resultInt *= sign;
result = wrap(resultInt);
}
}
/// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number.
///
/// @dev Notes:
/// - Refer to the notes in {Common.mulDiv18}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv18}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The result must fit in SD59x18.
///
/// @param x The multiplicand as an SD59x18 number.
/// @param y The multiplier as an SD59x18 number.
/// @return result The product as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
revert Errors.PRBMath_SD59x18_Mul_InputTooSmall();
}
// Get hold of the absolute values of x and y.
uint256 xAbs;
uint256 yAbs;
unchecked {
xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
}
// Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18.
uint256 resultAbs = Common.mulDiv18(xAbs, yAbs);
if (resultAbs > uint256(uMAX_SD59x18)) {
revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y);
}
// Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
// negative, 0 for positive or zero).
bool sameSign = (xInt ^ yInt) > -1;
// If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
unchecked {
result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
}
}
/// @notice Raises x to the power of y using the following formula:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}, {log2}, and {mul}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as an SD59x18 number.
/// @param y Exponent to raise x to, as an SD59x18 number
/// @return result x raised to power y, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
// If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
if (xInt == 0) {
return yInt == 0 ? UNIT : ZERO;
}
// If x is `UNIT`, the result is always `UNIT`.
else if (xInt == uUNIT) {
return UNIT;
}
// If y is zero, the result is always `UNIT`.
if (yInt == 0) {
return UNIT;
}
// If y is `UNIT`, the result is always x.
else if (yInt == uUNIT) {
return x;
}
// Calculate the result using the formula.
result = exp2(mul(log2(x), y));
}
/// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {abs} and {Common.mulDiv18}.
/// - The result must fit in SD59x18.
///
/// @param x The base as an SD59x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) {
uint256 xAbs = uint256(abs(x).unwrap());
// Calculate the first iteration of the loop in advance.
uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT);
// Equivalent to `for(y /= 2; y > 0; y /= 2)`.
uint256 yAux = y;
for (yAux >>= 1; yAux > 0; yAux >>= 1) {
xAbs = Common.mulDiv18(xAbs, xAbs);
// Equivalent to `y % 2 == 1`.
if (yAux & 1 > 0) {
resultAbs = Common.mulDiv18(resultAbs, xAbs);
}
}
// The result must fit in SD59x18.
if (resultAbs > uint256(uMAX_SD59x18)) {
revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y);
}
unchecked {
// Is the base negative and the exponent odd? If yes, the result should be negative.
int256 resultInt = int256(resultAbs);
bool isNegative = x.unwrap() < 0 && y & 1 == 1;
if (isNegative) {
resultInt = -resultInt;
}
result = wrap(resultInt);
}
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - Only the positive root is returned.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x ≥ 0, since complex numbers are not supported.
/// - x ≤ MAX_SD59x18 / UNIT
///
/// @param x The SD59x18 number for which to calculate the square root.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < 0) {
revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x);
}
if (xInt > uMAX_SD59x18 / uUNIT) {
revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x);
}
unchecked {
// Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers.
// In this case, the two numbers are both the square root.
uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT));
result = wrap(int256(resultUint));
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;
/// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int256.
type SD59x18 is int256;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoInt256,
Casting.intoSD1x18,
Casting.intoSD21x18,
Casting.intoUD2x18,
Casting.intoUD21x18,
Casting.intoUD60x18,
Casting.intoUint256,
Casting.intoUint128,
Casting.intoUint40,
Casting.unwrap
} for SD59x18 global;
/*//////////////////////////////////////////////////////////////////////////
MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
using {
Math.abs,
Math.avg,
Math.ceil,
Math.div,
Math.exp,
Math.exp2,
Math.floor,
Math.frac,
Math.gm,
Math.inv,
Math.log10,
Math.log2,
Math.ln,
Math.mul,
Math.pow,
Math.powu,
Math.sqrt
} for SD59x18 global;
/*//////////////////////////////////////////////////////////////////////////
HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
using {
Helpers.add,
Helpers.and,
Helpers.eq,
Helpers.gt,
Helpers.gte,
Helpers.isZero,
Helpers.lshift,
Helpers.lt,
Helpers.lte,
Helpers.mod,
Helpers.neq,
Helpers.not,
Helpers.or,
Helpers.rshift,
Helpers.sub,
Helpers.uncheckedAdd,
Helpers.uncheckedSub,
Helpers.uncheckedUnary,
Helpers.xor
} for SD59x18 global;
/*//////////////////////////////////////////////////////////////////////////
OPERATORS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes it possible to use these operators on the SD59x18 type.
using {
Helpers.add as +,
Helpers.and2 as &,
Math.div as /,
Helpers.eq as ==,
Helpers.gt as >,
Helpers.gte as >=,
Helpers.lt as <,
Helpers.lte as <=,
Helpers.mod as %,
Math.mul as *,
Helpers.neq as !=,
Helpers.not as ~,
Helpers.or as |,
Helpers.sub as -,
Helpers.unary as -,
Helpers.xor as ^
} for SD59x18 global;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { UD21x18 } from "./ValueType.sol";
/// @notice Casts a UD21x18 number into SD59x18.
/// @dev There is no overflow check because UD21x18 ⊆ SD59x18.
function intoSD59x18(UD21x18 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(int256(uint256(UD21x18.unwrap(x))));
}
/// @notice Casts a UD21x18 number into UD60x18.
/// @dev There is no overflow check because UD21x18 ⊆ UD60x18.
function intoUD60x18(UD21x18 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(UD21x18.unwrap(x));
}
/// @notice Casts a UD21x18 number into uint128.
/// @dev This is basically an alias for {unwrap}.
function intoUint128(UD21x18 x) pure returns (uint128 result) {
result = UD21x18.unwrap(x);
}
/// @notice Casts a UD21x18 number into uint256.
/// @dev There is no overflow check because UD21x18 ⊆ uint256.
function intoUint256(UD21x18 x) pure returns (uint256 result) {
result = uint256(UD21x18.unwrap(x));
}
/// @notice Casts a UD21x18 number into uint40.
/// @dev Requirements:
/// - x ≤ MAX_UINT40
function intoUint40(UD21x18 x) pure returns (uint40 result) {
uint128 xUint = UD21x18.unwrap(x);
if (xUint > uint128(Common.MAX_UINT40)) {
revert Errors.PRBMath_UD21x18_IntoUint40_Overflow(x);
}
result = uint40(xUint);
}
/// @notice Alias for {wrap}.
function ud21x18(uint128 x) pure returns (UD21x18 result) {
result = UD21x18.wrap(x);
}
/// @notice Unwrap a UD21x18 number into uint128.
function unwrap(UD21x18 x) pure returns (uint128 result) {
result = UD21x18.unwrap(x);
}
/// @notice Wraps a uint128 number into UD21x18.
function wrap(uint128 x) pure returns (UD21x18 result) {
result = UD21x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD21x18 } from "./ValueType.sol";
/// @dev Euler's number as a UD21x18 number.
UD21x18 constant E = UD21x18.wrap(2_718281828459045235);
/// @dev The maximum value a UD21x18 number can have.
uint128 constant uMAX_UD21x18 = 340282366920938463463_374607431768211455;
UD21x18 constant MAX_UD21x18 = UD21x18.wrap(uMAX_UD21x18);
/// @dev PI as a UD21x18 number.
UD21x18 constant PI = UD21x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of UD21x18.
uint256 constant uUNIT = 1e18;
UD21x18 constant UNIT = UD21x18.wrap(1e18);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD21x18 } from "./ValueType.sol";
/// @notice Thrown when trying to cast a UD21x18 number that doesn't fit in uint40.
error PRBMath_UD21x18_IntoUint40_Overflow(UD21x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
/// @notice The unsigned 21.18-decimal fixed-point number representation, which can have up to 21 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type uint128. This is useful when end users want to use uint128 to save gas, e.g. with tight variable packing in contract
/// storage.
type UD21x18 is uint128;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD59x18,
Casting.intoUD60x18,
Casting.intoUint128,
Casting.intoUint256,
Casting.intoUint40,
Casting.unwrap
} for UD21x18 global;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { UD2x18 } from "./ValueType.sol";
/// @notice Casts a UD2x18 number into SD59x18.
/// @dev There is no overflow check because UD2x18 ⊆ SD59x18.
function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x))));
}
/// @notice Casts a UD2x18 number into UD60x18.
/// @dev There is no overflow check because UD2x18 ⊆ UD60x18.
function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(UD2x18.unwrap(x));
}
/// @notice Casts a UD2x18 number into uint128.
/// @dev There is no overflow check because UD2x18 ⊆ uint128.
function intoUint128(UD2x18 x) pure returns (uint128 result) {
result = uint128(UD2x18.unwrap(x));
}
/// @notice Casts a UD2x18 number into uint256.
/// @dev There is no overflow check because UD2x18 ⊆ uint256.
function intoUint256(UD2x18 x) pure returns (uint256 result) {
result = uint256(UD2x18.unwrap(x));
}
/// @notice Casts a UD2x18 number into uint40.
/// @dev Requirements:
/// - x ≤ MAX_UINT40
function intoUint40(UD2x18 x) pure returns (uint40 result) {
uint64 xUint = UD2x18.unwrap(x);
if (xUint > uint64(Common.MAX_UINT40)) {
revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x);
}
result = uint40(xUint);
}
/// @notice Alias for {wrap}.
function ud2x18(uint64 x) pure returns (UD2x18 result) {
result = UD2x18.wrap(x);
}
/// @notice Unwrap a UD2x18 number into uint64.
function unwrap(UD2x18 x) pure returns (uint64 result) {
result = UD2x18.unwrap(x);
}
/// @notice Wraps a uint64 number into UD2x18.
function wrap(uint64 x) pure returns (UD2x18 result) {
result = UD2x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD2x18 } from "./ValueType.sol";
/// @dev Euler's number as a UD2x18 number.
UD2x18 constant E = UD2x18.wrap(2_718281828459045235);
/// @dev The maximum value a UD2x18 number can have.
uint64 constant uMAX_UD2x18 = 18_446744073709551615;
UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18);
/// @dev PI as a UD2x18 number.
UD2x18 constant PI = UD2x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of UD2x18.
UD2x18 constant UNIT = UD2x18.wrap(1e18);
uint64 constant uUNIT = 1e18;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD2x18 } from "./ValueType.sol";
/// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40.
error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
/// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract
/// storage.
type UD2x18 is uint64;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD59x18,
Casting.intoUD60x18,
Casting.intoUint128,
Casting.intoUint256,
Casting.intoUint40,
Casting.unwrap
} for UD2x18 global;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_SD21x18 } from "../sd21x18/Constants.sol";
import { SD21x18 } from "../sd21x18/ValueType.sol";
import { uMAX_SD59x18 } from "../sd59x18/Constants.sol";
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { uMAX_UD21x18 } from "../ud21x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD21x18 } from "../ud21x18/ValueType.sol";
import { UD60x18 } from "./ValueType.sol";
/// @notice Casts a UD60x18 number into SD1x18.
/// @dev Requirements:
/// - x ≤ uMAX_SD1x18
function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uint256(int256(uMAX_SD1x18))) {
revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x);
}
result = SD1x18.wrap(int64(uint64(xUint)));
}
/// @notice Casts a UD60x18 number into SD21x18.
/// @dev Requirements:
/// - x ≤ uMAX_SD21x18
function intoSD21x18(UD60x18 x) pure returns (SD21x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uint256(int256(uMAX_SD21x18))) {
revert CastingErrors.PRBMath_UD60x18_IntoSD21x18_Overflow(x);
}
result = SD21x18.wrap(int128(uint128(xUint)));
}
/// @notice Casts a UD60x18 number into UD2x18.
/// @dev Requirements:
/// - x ≤ uMAX_UD2x18
function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uMAX_UD2x18) {
revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x);
}
result = UD2x18.wrap(uint64(xUint));
}
/// @notice Casts a UD60x18 number into UD21x18.
/// @dev Requirements:
/// - x ≤ uMAX_UD21x18
function intoUD21x18(UD60x18 x) pure returns (UD21x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uMAX_UD21x18) {
revert CastingErrors.PRBMath_UD60x18_IntoUD21x18_Overflow(x);
}
result = UD21x18.wrap(uint128(xUint));
}
/// @notice Casts a UD60x18 number into SD59x18.
/// @dev Requirements:
/// - x ≤ uMAX_SD59x18
function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uint256(uMAX_SD59x18)) {
revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x);
}
result = SD59x18.wrap(int256(xUint));
}
/// @notice Casts a UD60x18 number into uint128.
/// @dev This is basically an alias for {unwrap}.
function intoUint256(UD60x18 x) pure returns (uint256 result) {
result = UD60x18.unwrap(x);
}
/// @notice Casts a UD60x18 number into uint128.
/// @dev Requirements:
/// - x ≤ MAX_UINT128
function intoUint128(UD60x18 x) pure returns (uint128 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > MAX_UINT128) {
revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x);
}
result = uint128(xUint);
}
/// @notice Casts a UD60x18 number into uint40.
/// @dev Requirements:
/// - x ≤ MAX_UINT40
function intoUint40(UD60x18 x) pure returns (uint40 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > MAX_UINT40) {
revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x);
}
result = uint40(xUint);
}
/// @notice Alias for {wrap}.
function ud(uint256 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(x);
}
/// @notice Alias for {wrap}.
function ud60x18(uint256 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(x);
}
/// @notice Unwraps a UD60x18 number into uint256.
function unwrap(UD60x18 x) pure returns (uint256 result) {
result = UD60x18.unwrap(x);
}
/// @notice Wraps a uint256 number into the UD60x18 value type.
function wrap(uint256 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD60x18 } from "./ValueType.sol";
// NOTICE: the "u" prefix stands for "unwrapped".
/// @dev Euler's number as a UD60x18 number.
UD60x18 constant E = UD60x18.wrap(2_718281828459045235);
/// @dev The maximum input permitted in {exp}.
uint256 constant uEXP_MAX_INPUT = 133_084258667509499440;
UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT);
/// @dev The maximum input permitted in {exp2}.
uint256 constant uEXP2_MAX_INPUT = 192e18 - 1;
UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT);
/// @dev Half the UNIT number.
uint256 constant uHALF_UNIT = 0.5e18;
UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT);
/// @dev $log_2(10)$ as a UD60x18 number.
uint256 constant uLOG2_10 = 3_321928094887362347;
UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10);
/// @dev $log_2(e)$ as a UD60x18 number.
uint256 constant uLOG2_E = 1_442695040888963407;
UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E);
/// @dev The maximum value a UD60x18 number can have.
uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935;
UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18);
/// @dev The maximum whole value a UD60x18 number can have.
uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000;
UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18);
/// @dev PI as a UD60x18 number.
UD60x18 constant PI = UD60x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of UD60x18.
uint256 constant uUNIT = 1e18;
UD60x18 constant UNIT = UD60x18.wrap(uUNIT);
/// @dev The unit number squared.
uint256 constant uUNIT_SQUARED = 1e36;
UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED);
/// @dev Zero as a UD60x18 number.
UD60x18 constant ZERO = UD60x18.wrap(0);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD60x18 } from "./ValueType.sol";
/// @notice Thrown when ceiling a number overflows UD60x18.
error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x);
/// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18.
error PRBMath_UD60x18_Convert_Overflow(uint256 x);
/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x);
/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x);
/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18.
error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD21x18.
error PRBMath_UD60x18_IntoSD21x18_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18.
error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD21x18.
error PRBMath_UD60x18_IntoUD21x18_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x);
/// @notice Thrown when taking the logarithm of a number less than UNIT.
error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x);
/// @notice Thrown when calculating the square root overflows UD60x18.
error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { wrap } from "./Casting.sol";
import { UD60x18 } from "./ValueType.sol";
/// @notice Implements the checked addition operation (+) in the UD60x18 type.
function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() + y.unwrap());
}
/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() & bits);
}
/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() & y.unwrap());
}
/// @notice Implements the equal operation (==) in the UD60x18 type.
function eq(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() == y.unwrap();
}
/// @notice Implements the greater than operation (>) in the UD60x18 type.
function gt(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() > y.unwrap();
}
/// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type.
function gte(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() >= y.unwrap();
}
/// @notice Implements a zero comparison check function in the UD60x18 type.
function isZero(UD60x18 x) pure returns (bool result) {
// This wouldn't work if x could be negative.
result = x.unwrap() == 0;
}
/// @notice Implements the left shift operation (<<) in the UD60x18 type.
function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() << bits);
}
/// @notice Implements the lower than operation (<) in the UD60x18 type.
function lt(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() < y.unwrap();
}
/// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type.
function lte(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() <= y.unwrap();
}
/// @notice Implements the checked modulo operation (%) in the UD60x18 type.
function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() % y.unwrap());
}
/// @notice Implements the not equal operation (!=) in the UD60x18 type.
function neq(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() != y.unwrap();
}
/// @notice Implements the NOT (~) bitwise operation in the UD60x18 type.
function not(UD60x18 x) pure returns (UD60x18 result) {
result = wrap(~x.unwrap());
}
/// @notice Implements the OR (|) bitwise operation in the UD60x18 type.
function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() | y.unwrap());
}
/// @notice Implements the right shift operation (>>) in the UD60x18 type.
function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() >> bits);
}
/// @notice Implements the checked subtraction operation (-) in the UD60x18 type.
function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() - y.unwrap());
}
/// @notice Implements the unchecked addition operation (+) in the UD60x18 type.
function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
unchecked {
result = wrap(x.unwrap() + y.unwrap());
}
}
/// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type.
function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
unchecked {
result = wrap(x.unwrap() - y.unwrap());
}
}
/// @notice Implements the XOR (^) bitwise operation in the UD60x18 type.
function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() ^ y.unwrap());
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { wrap } from "./Casting.sol";
import {
uEXP_MAX_INPUT,
uEXP2_MAX_INPUT,
uHALF_UNIT,
uLOG2_10,
uLOG2_E,
uMAX_UD60x18,
uMAX_WHOLE_UD60x18,
UNIT,
uUNIT,
uUNIT_SQUARED,
ZERO
} from "./Constants.sol";
import { UD60x18 } from "./ValueType.sol";
/*//////////////////////////////////////////////////////////////////////////
MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Calculates the arithmetic average of x and y using the following formula:
///
/// $$
/// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2)
/// $$
///
/// In English, this is what this formula does:
///
/// 1. AND x and y.
/// 2. Calculate half of XOR x and y.
/// 3. Add the two results together.
///
/// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here:
/// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The arithmetic average as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
unchecked {
result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1));
}
}
/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x ≤ MAX_WHOLE_UD60x18
///
/// @param x The UD60x18 number to ceil.
/// @return result The smallest whole number greater than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint > uMAX_WHOLE_UD60x18) {
revert Errors.PRBMath_UD60x18_Ceil_Overflow(x);
}
assembly ("memory-safe") {
// Equivalent to `x % UNIT`.
let remainder := mod(x, uUNIT)
// Equivalent to `UNIT - remainder`.
let delta := sub(uUNIT, remainder)
// Equivalent to `x + remainder > 0 ? delta : 0`.
result := add(x, mul(delta, gt(remainder, 0)))
}
}
/// @notice Divides two UD60x18 numbers, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @param x The numerator as a UD60x18 number.
/// @param y The denominator as a UD60x18 number.
/// @return result The quotient as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap()));
}
/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Requirements:
/// - x ≤ 133_084258667509499440
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
// This check prevents values greater than 192e18 from being passed to {exp2}.
if (xUint > uEXP_MAX_INPUT) {
revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x);
}
unchecked {
// Inline the fixed-point multiplication to save gas.
uint256 doubleUnitProduct = xUint * uLOG2_E;
result = exp2(wrap(doubleUnitProduct / uUNIT));
}
}
/// @notice Calculates the binary exponent of x using the binary fraction method.
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693
///
/// Requirements:
/// - x < 192e18
/// - The result must fit in UD60x18.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
// Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
if (xUint > uEXP2_MAX_INPUT) {
revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x);
}
// Convert x to the 192.64-bit fixed-point format.
uint256 x_192x64 = (xUint << 64) / uUNIT;
// Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation.
result = wrap(Common.exp2(x_192x64));
}
/// @notice Yields the greatest whole number less than or equal to x.
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
/// @param x The UD60x18 number to floor.
/// @return result The greatest whole number less than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(UD60x18 x) pure returns (UD60x18 result) {
assembly ("memory-safe") {
// Equivalent to `x % UNIT`.
let remainder := mod(x, uUNIT)
// Equivalent to `x - remainder > 0 ? remainder : 0)`.
result := sub(x, mul(remainder, gt(remainder, 0)))
}
}
/// @notice Yields the excess beyond the floor of x using the odd function definition.
/// @dev See https://en.wikipedia.org/wiki/Fractional_part.
/// @param x The UD60x18 number to get the fractional part of.
/// @return result The fractional part of x as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function frac(UD60x18 x) pure returns (UD60x18 result) {
assembly ("memory-safe") {
result := mod(x, uUNIT)
}
}
/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down.
///
/// @dev Requirements:
/// - x * y must fit in UD60x18.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
if (xUint == 0 || yUint == 0) {
return ZERO;
}
unchecked {
// Checking for overflow this way is faster than letting Solidity do it.
uint256 xyUint = xUint * yUint;
if (xyUint / xUint != yUint) {
revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y);
}
// We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
// during multiplication. See the comments in {Common.sqrt}.
result = wrap(Common.sqrt(xyUint));
}
}
/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The UD60x18 number for which to calculate the inverse.
/// @return result The inverse as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(UD60x18 x) pure returns (UD60x18 result) {
unchecked {
result = wrap(uUNIT_SQUARED / x.unwrap());
}
}
/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(UD60x18 x) pure returns (UD60x18 result) {
unchecked {
// Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
// {log2} can return is ~196_205294292027477728.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
}
}
/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint < uUNIT) {
revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
}
// Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}.
// prettier-ignore
assembly ("memory-safe") {
switch x
case 1 { result := mul(uUNIT, sub(0, 18)) }
case 10 { result := mul(uUNIT, sub(1, 18)) }
case 100 { result := mul(uUNIT, sub(2, 18)) }
case 1000 { result := mul(uUNIT, sub(3, 18)) }
case 10000 { result := mul(uUNIT, sub(4, 18)) }
case 100000 { result := mul(uUNIT, sub(5, 18)) }
case 1000000 { result := mul(uUNIT, sub(6, 18)) }
case 10000000 { result := mul(uUNIT, sub(7, 18)) }
case 100000000 { result := mul(uUNIT, sub(8, 18)) }
case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
case 1000000000000000000 { result := 0 }
case 10000000000000000000 { result := uUNIT }
case 100000000000000000000 { result := mul(uUNIT, 2) }
case 1000000000000000000000 { result := mul(uUNIT, 3) }
case 10000000000000000000000 { result := mul(uUNIT, 4) }
case 100000000000000000000000 { result := mul(uUNIT, 5) }
case 1000000000000000000000000 { result := mul(uUNIT, 6) }
case 10000000000000000000000000 { result := mul(uUNIT, 7) }
case 100000000000000000000000000 { result := mul(uUNIT, 8) }
case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) }
default { result := uMAX_UD60x18 }
}
if (result.unwrap() == uMAX_UD60x18) {
unchecked {
// Inline the fixed-point division to save gas.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
}
}
}
/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x ≥ UNIT
///
/// @param x The UD60x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint < uUNIT) {
revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
}
unchecked {
// Calculate the integer part of the logarithm.
uint256 n = Common.msb(xUint / uUNIT);
// This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n
// n is at most 255 and UNIT is 1e18.
uint256 resultUint = n * uUNIT;
// Calculate $y = x * 2^{-n}$.
uint256 y = xUint >> n;
// If y is the unit number, the fractional part is zero.
if (y == uUNIT) {
return wrap(resultUint);
}
// Calculate the fractional part via the iterative approximation.
// The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
uint256 DOUBLE_UNIT = 2e18;
for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
y = (y * y) / uUNIT;
// Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
if (y >= DOUBLE_UNIT) {
// Add the 2^{-m} factor to the logarithm.
resultUint += delta;
// Halve y, which corresponds to z/2 in the Wikipedia article.
y >>= 1;
}
}
result = wrap(resultUint);
}
}
/// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @dev See the documentation in {Common.mulDiv18}.
/// @param x The multiplicand as a UD60x18 number.
/// @param y The multiplier as a UD60x18 number.
/// @return result The product as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap()));
}
/// @notice Raises x to the power of y.
///
/// For $1 \leq x \leq \infty$, the following standard formula is used:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used:
///
/// $$
/// i = \frac{1}{x}
/// w = 2^{log_2{i} * y}
/// x^y = \frac{1}{w}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2} and {mul}.
/// - Returns `UNIT` for 0^0.
/// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
// If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
if (xUint == 0) {
return yUint == 0 ? UNIT : ZERO;
}
// If x is `UNIT`, the result is always `UNIT`.
else if (xUint == uUNIT) {
return UNIT;
}
// If y is zero, the result is always `UNIT`.
if (yUint == 0) {
return UNIT;
}
// If y is `UNIT`, the result is always x.
else if (yUint == uUNIT) {
return x;
}
// If x is > UNIT, use the standard formula.
if (xUint > uUNIT) {
result = exp2(mul(log2(x), y));
}
// Conversely, if x < UNIT, use the equivalent formula.
else {
UD60x18 i = wrap(uUNIT_SQUARED / xUint);
UD60x18 w = exp2(mul(log2(i), y));
result = wrap(uUNIT_SQUARED / w.unwrap());
}
}
/// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - The result must fit in UD60x18.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) {
// Calculate the first iteration of the loop in advance.
uint256 xUint = x.unwrap();
uint256 resultUint = y & 1 > 0 ? xUint : uUNIT;
// Equivalent to `for(y /= 2; y > 0; y /= 2)`.
for (y >>= 1; y > 0; y >>= 1) {
xUint = Common.mulDiv18(xUint, xUint);
// Equivalent to `y % 2 == 1`.
if (y & 1 > 0) {
resultUint = Common.mulDiv18(resultUint, xUint);
}
}
result = wrap(resultUint);
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x ≤ MAX_UD60x18 / UNIT
///
/// @param x The UD60x18 number for which to calculate the square root.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
unchecked {
if (xUint > uMAX_UD60x18 / uUNIT) {
revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x);
}
// Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers.
// In this case, the two numbers are both the square root.
result = wrap(Common.sqrt(xUint * uUNIT));
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;
/// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256.
/// @dev The value type is defined here so it can be imported in all other files.
type UD60x18 is uint256;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD1x18,
Casting.intoSD21x18,
Casting.intoSD59x18,
Casting.intoUD2x18,
Casting.intoUD21x18,
Casting.intoUint128,
Casting.intoUint256,
Casting.intoUint40,
Casting.unwrap
} for UD60x18 global;
/*//////////////////////////////////////////////////////////////////////////
MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
Math.avg,
Math.ceil,
Math.div,
Math.exp,
Math.exp2,
Math.floor,
Math.frac,
Math.gm,
Math.inv,
Math.ln,
Math.log10,
Math.log2,
Math.mul,
Math.pow,
Math.powu,
Math.sqrt
} for UD60x18 global;
/*//////////////////////////////////////////////////////////////////////////
HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
Helpers.add,
Helpers.and,
Helpers.eq,
Helpers.gt,
Helpers.gte,
Helpers.isZero,
Helpers.lshift,
Helpers.lt,
Helpers.lte,
Helpers.mod,
Helpers.neq,
Helpers.not,
Helpers.or,
Helpers.rshift,
Helpers.sub,
Helpers.uncheckedAdd,
Helpers.uncheckedSub,
Helpers.xor
} for UD60x18 global;
/*//////////////////////////////////////////////////////////////////////////
OPERATORS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes it possible to use these operators on the UD60x18 type.
using {
Helpers.add as +,
Helpers.and2 as &,
Math.div as /,
Helpers.eq as ==,
Helpers.gt as >,
Helpers.gte as >=,
Helpers.lt as <,
Helpers.lte as <=,
Helpers.or as |,
Helpers.mod as %,
Math.mul as *,
Helpers.neq as !=,
Helpers.not as ~,
Helpers.sub as -,
Helpers.xor as ^
} for UD60x18 global;// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Library for converting between addresses and bytes32 values.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Bytes32AddressLib.sol)
library Bytes32AddressLib {
function fromLast20Bytes(
bytes32 bytesValue
) internal pure returns (address) {
return address(uint160(uint256(bytesValue)));
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;
interface IUniswapV3Factory {
function createPool(
address tokenA,
address tokenB,
uint24 fee
) external returns (address pool);
function getPool(
address tokenA,
address tokenB,
uint24 fee
) external view returns (address pool);
function feeAmountTickSpacing(uint24 fee) external view returns (int24);
function initialize(uint160 sqrtPriceX96) external;
}
interface IWETH {
function deposit() external payable;
function withdraw(uint256) external;
function approve(address guy, uint256 wad) external returns (bool);
}
interface INonfungiblePositionManager {
struct MintParams {
address token0;
address token1;
uint24 fee;
int24 tickLower;
int24 tickUpper;
uint256 amount0Desired;
uint256 amount1Desired;
uint256 amount0Min;
uint256 amount1Min;
address recipient;
uint256 deadline;
}
function mint(MintParams calldata params)
external
payable
returns (
uint256 tokenId,
uint128 liquidity,
uint256 amount0,
uint256 amount1
);
function positions(uint256 tokenId)
external
view
returns (
uint96 nonce,
address operator,
address token0,
address token1,
uint24 fee,
int24 tickLower,
int24 tickUpper,
uint128 liquidity,
uint256 feeGrowthInside0LastX128,
uint256 feeGrowthInside1LastX128,
uint128 tokensOwed0,
uint128 tokensOwed1
);
function approve(address to, uint256 tokenId) external;
function ownerOf(uint256 tokenId) external view returns (address);
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
function collect(CollectParams calldata params)
external
returns (uint256 amount0, uint256 amount1);
struct CollectParams {
uint256 tokenId;
address recipient;
uint128 amount0Max;
uint128 amount1Max;
}
}
interface ISwapRouter {
struct ExactInputSingleParams {
address tokenIn;
address tokenOut;
uint24 fee;
address recipient;
uint256 amountIn;
uint256 amountOutMinimum;
uint160 sqrtPriceLimitX96;
}
function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut);
function unwrapWETH9(uint256 amountMinimum, address recipient) external payable;
}
interface IUniswapV3Pool {
function slot0()
external
view
returns (
uint160 sqrtPriceX96,
int24 tick,
uint16 observationIndex,
uint16 observationCardinality,
uint16 observationCardinalityNext,
uint8 feeProtocol,
bool unlocked
);
function initialize(uint160 sqrtPriceX96) external;
}
interface IQuoterV2 {
function quoteExactInputSingle(
IQuoterV2.QuoteExactInputSingleParams memory params
) external returns (
uint256 amountOut,
uint160 sqrtPriceX96After,
uint32 initializedTicksCrossed,
uint256 gasEstimate
);
struct QuoteExactInputSingleParams {
address tokenIn;
address tokenOut;
uint256 amountIn;
uint24 fee;
uint160 sqrtPriceLimitX96;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;
import {SD59x18} from "@prb/math/src/SD59x18.sol";
import {convert} from "@prb/math/src/sd59x18/Conversions.sol";
library LesterMathLib {
uint256 constant LN10001 = 99995000330000;
function sqrt(uint256 x) internal pure returns (uint256 y) {
uint256 z = (x + 1) / 2;
y = x;
while (z < y) {
y = z;
z = (x / z + z) / 2;
}
}
int24 internal constant MIN_TICK = -887272;
uint256 internal constant MAX_TICK = 887272;
uint160 internal constant MIN_SQRT_RATIO = 4295128739;
uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
require(absTick <= MAX_TICK, 'T');
uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
if (tick > 0) ratio = type(uint256).max / ratio;
sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
}
function maxUsableTick(int24 tickSpacing) internal pure returns (int24) {
int24 maxTick = 887272;
return maxTick - (maxTick % tickSpacing);
}
function calculateNumerator(uint256 supply, uint256 liquidity) public pure returns (uint256) {
return uint256(computeLn(supply/liquidity)*1e18);
}
function calculateTickFromNumerator(uint256 numerator) internal pure returns (int256) {
int256 tick = (int256(numerator) / int256(LN10001)) / 10**18;
return tick;
}
function computeLog10(uint256 x) internal pure returns (int256) {
SD59x18 num = convert(int256(x * 10**18));
return num.log10().unwrap();
}
function computeLn(uint256 x) internal pure returns (int256) {
SD59x18 num = convert(int256(x * 10**18));
int256 lnOffset = 41446531673892822311; // ln(10^18)
return num.ln().unwrap() - lnOffset;
}
function uint2str(uint256 _i) internal pure returns (string memory) {
if (_i == 0) return "0";
uint256 j = _i;
uint256 length;
while (j != 0) {
length++;
j /= 10;
}
bytes memory bstr = new bytes(length);
uint256 k = length;
j = _i;
while (j != 0) {
bstr[--k] = bytes1(uint8(48 + j % 10));
j /= 10;
}
return string(bstr);
}
function parseInt(string memory _value) internal pure returns (uint256) {
bytes memory b = bytes(_value);
uint256 result = 0;
for(uint256 i = 0; i < b.length; i++) {
result = result * 10 + uint8(b[i]) - 48;
}
return result;
}
function substring(string memory str, uint256 startIndex, uint256 endIndex) internal pure returns (string memory) {
bytes memory strBytes = bytes(str);
bytes memory result = new bytes(endIndex-startIndex);
for(uint256 i = startIndex; i < endIndex; i++) {
result[i-startIndex] = strBytes[i];
}
return string(result);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
contract Token is ERC20, Ownable {
address private _deployer;
address public lester;
address public immutable uniswapV3Factory;
address public immutable positionManager;
address public poolAddress;
uint256 public maxWalletPercentage;
address payable public feeDistributor;
string public twitterName;
string public websiteUrl;
modifier onlyDeployer() {
require(msg.sender == _deployer, "Only Deployer can call this function");
_;
}
constructor(
string memory name_,
string memory symbol_,
uint256 maxSupply_,
address deployer_,
address _uniswapV3Factory,
address _positionManager,
uint256 _maxWalletPercentage,
string memory _twitterName,
string memory _websiteUrl
) ERC20(name_, symbol_) Ownable(deployer_) {
_deployer = deployer_;
lester = msg.sender;
uniswapV3Factory = _uniswapV3Factory;
positionManager = _positionManager;
_mint(msg.sender, maxSupply_);
maxWalletPercentage = _maxWalletPercentage;
twitterName = _twitterName;
websiteUrl = _websiteUrl;
}
function _update(
address from,
address to,
uint256 amount
) internal override {
if (to != address(0) &&
from != address(0) &&
to != lester &&
from != lester &&
to != uniswapV3Factory &&
to != positionManager &&
to != poolAddress) {
uint256 maxWalletAmount = (totalSupply() * maxWalletPercentage) / 1000;
require(
balanceOf(to) + amount <= maxWalletAmount,
"Max wallet percentage exceeded"
);
}
super._update(from, to, amount);
}
function setPoolAddress(address _poolAddress) external {
require(msg.sender == lester, "Only Lester can set pool address");
poolAddress = _poolAddress;
}
function deployer() public view returns (address) {
return _deployer;
}
function transferOwnership(address /* newOwner */) public virtual override {
revert("Ownership transfer is disabled");
}
}{
"viaIR": true,
"optimizer": {
"enabled": true,
"runs": 200
},
"evmVersion": "paris",
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"libraries": {
"contracts/Lester.sol": {
"LesterMathLib": "0xa1e439a765f42f9de43681dfa67b6a66f7907b7a"
}
}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"weth_","type":"address"},{"internalType":"address","name":"uniswapV3Factory_","type":"address"},{"internalType":"address","name":"positionManager_","type":"address"},{"internalType":"address","name":"swapRouter_","type":"address"},{"internalType":"address","name":"owner_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AddressAlreadyInTeam","type":"error"},{"inputs":[],"name":"AddressNotInTeam","type":"error"},{"inputs":[],"name":"InvalidTokenOrder","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"enabled","type":"bool"}],"name":"CreationStatusChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"message","type":"string"}],"name":"Debug","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"member","type":"address"}],"name":"TeamMemberAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"member","type":"address"}],"name":"TeamMemberRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"tokenAddress","type":"address"},{"indexed":false,"internalType":"address","name":"deployer","type":"address"},{"indexed":false,"internalType":"string","name":"name","type":"string"},{"indexed":false,"internalType":"string","name":"symbol","type":"string"},{"indexed":false,"internalType":"uint256","name":"supply","type":"uint256"}],"name":"TokenCreated","type":"event"},{"inputs":[],"name":"DEAD_ADDRESS","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TICK_SPACING","outputs":[{"internalType":"int24","name":"","type":"int24"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"member","type":"address"}],"name":"addTeamMember","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"supply","type":"uint256"},{"internalType":"uint256","name":"liquidity","type":"uint256"}],"name":"calculateNumerator","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"numerator","type":"uint256"}],"name":"calculateTickFromNumerator","outputs":[{"internalType":"int256","name":"","type":"int256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"collectAllFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"collectFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint256","name":"supply","type":"uint256"},{"internalType":"uint256","name":"liquidity","type":"uint256"},{"internalType":"uint24","name":"fee","type":"uint24"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"address","name":"deployer","type":"address"},{"internalType":"uint256","name":"maxWalletPercentage","type":"uint256"},{"internalType":"uint256","name":"firstBuyAmount","type":"uint256"},{"internalType":"string","name":"twitterName","type":"string"},{"internalType":"string","name":"websiteUrl","type":"string"}],"name":"deployToken","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"deployer","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint256","name":"supply","type":"uint256"},{"internalType":"uint256","name":"maxWalletPercentage","type":"uint256"},{"internalType":"string","name":"twitterName","type":"string"},{"internalType":"string","name":"websiteUrl","type":"string"}],"name":"generateSalt","outputs":[{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"address","name":"token","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTeamMembers","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isCreationEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isTeamMember","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"positionManager","outputs":[{"internalType":"contract INonfungiblePositionManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"deployer","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint256","name":"supply","type":"uint256"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256","name":"maxWalletPercentage","type":"uint256"},{"internalType":"string","name":"twitterName","type":"string"},{"internalType":"string","name":"websiteUrl","type":"string"}],"name":"predictToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"member","type":"address"}],"name":"removeTeamMember","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"enabled","type":"bool"}],"name":"setCreationEnabled","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"swapRouter","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"teamMembers","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"tokenList","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"tokenPositions","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"uniswapV3Factory","outputs":[{"internalType":"contract IUniswapV3Factory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"usdc","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"weth","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]Contract Creation Code
6101403461021b57601f6146f238819003918201601f19168301916001600160401b038311848410176102205780849260a09460405283398101031261021b5761004881610236565b9061005560208201610236565b61006160408301610236565b9061006e60608401610236565b926001600160a01b039061008490608001610236565b1693841561020557600080546001600160a01b031981168717825560405196916001600160a01b03909116907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09080a373833589fcd6edb6e08f4c7c32d4f71b54bda0291360a05261dead60c0526005805460ff191660011790556080526001600160a01b0390811660e0521661010052610120526144a7908161024b823960805181818161021401528181610e3b0152818161143701528181611480015281816116600152818161181401528181611a3f01528181611a8701528181611b1201528181611b790152611fc7015260a05181610f77015260c05181610dda015260e051818181610cc2015281816112b2015281816113ac015281816114be0152818161169f0152818161200a0152612d0a01526101005181818161060a01528181610876015281816109fe015281816113d4015281816117490152818161191e015281816119f30152612d320152610120518181816104b70152611acd0152f35b631e4fbdf760e01b600052600060045260246000fd5b600080fd5b634e487b7160e01b600052604160045260246000fd5b51906001600160a01b038216820361021b5756fe6080604052600436101561001b575b361561001957600080fd5b005b6000803560e01c80630d9a444614612a2557806313a9e9d91461112257806314eba02614610fa65780633e413bee14610f615780633eb2b5ad14610e6a5780633fc8cef314610e2557806346ca626b14610e095780634e6fd6c414610dc4578063599b261e14610cf15780635b54918214610cac578063686f2c901461098d5780636a5dab9f146108ff578063715018a6146108a5578063791b98bc146108605780638da5cb5b146108395780639ead72221461080e578063a10b521b146107eb578063a480ca791461057c578063bbe9f99d1461053d578063c0dd7cd5146104e6578063c31c9c07146104a1578063c43cb3fb14610477578063e75f7ddb14610433578063efded1471461036b578063f2fde38b146102e55763fd8b3c9d14610145575061000e565b346102e25760e03660031901126102e25761015e612b0b565b906024356001600160401b0381116102e05761017e903690600401612b21565b916044356001600160401b0381116102e05761019e903690600401612b21565b92909360a4356001600160401b0381116102dc576101c0903690600401612b21565b92909160c435976001600160401b0389116102d8578261020a85899b98886101ee8d9c9b3690600401612b21565b9c819c848f969395509788915b608435938c606435938d612c52565b6001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811690821610806102cf575b6102b5575061024d90612e7d565b986103e88a10156102705761020a988a919a888888848f94959e958a8f966101fb565b60405162461bcd60e51b815260206004820152601960248201527f436f756c64206e6f742066696e642076616c69642073616c74000000000000006044820152606490fd5b604080519283526001600160a01b03909116602083015290f35b50803b1561023f565b8580fd5b8380fd5b505b80fd5b50346102e25760203660031901126102e2576102ff612b0b565b610307612f25565b6001600160a01b031680156103575781546001600160a01b03198116821783556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08380a380f35b631e4fbdf760e01b82526004829052602482fd5b50346102e257806003193601126102e25760405180602060045491828152018091600485527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b90855b81811061041457505050826103ca910383612a88565b604051928392602084019060208552518091526040840192915b8181106103f2575050500390f35b82516001600160a01b03168452859450602093840193909201916001016103e4565b82546001600160a01b03168452602090930192600192830192016103b4565b50346102e25760203660031901126102e257600435906004548210156102e257602061045e83612b4e565b905460405160039290921b1c6001600160a01b03168152f35b50346102e25760403660031901126102e2576020610499602435600435612ea2565b604051908152f35b50346102e257806003193601126102e2576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b50346102e25760403660031901126102e257610500612b0b565b6001600160a01b03168152600260205260408120805460243592908310156102e257602061052e8484612b9a565b90549060031b1c604051908152f35b50346102e25760203660031901126102e25760209060ff906040906001600160a01b03610568612b0b565b168152600384522054166040519015158152f35b50346102e25760203660031901126102e257610596612b0b565b338252600360205260ff60408320541680156107d8575b6105b690612e05565b60018060a01b031681526002602052604081206040518082602082945493848152019085526020852092855b8181106107bf5750506105f792500382612a88565b80511561077a5781546001600160a01b037f000000000000000000000000000000000000000000000000000000000000000081169184911661063884612e5c565b5190833b1561076b5760405163095ea7b360e01b81526001600160a01b039190911660048201526024810191909152818160448183875af1801561076f57610756575b505b8251811015610752576106908184612e69565b518454604051916001600160801b03916001600160a01b0316906106b384612a57565b835260208301908152604080840183815260608501848152825163fc6f786560e01b81529551600487015292516001600160a01b031660248601525183166044850152905190911660648301528160848188875af180156107475761071c575b5060010161067d565b604090813d8111610740575b6107328183612a88565b810103126102dc5738610713565b503d610728565b6040513d87823e3d90fd5b8380f35b8161076091612a88565b61076b57823861067b565b8280fd5b6040513d84823e3d90fd5b60405162461bcd60e51b815260206004820152601b60248201527f4e6f20706f736974696f6e7320666f72207468697320746f6b656e00000000006044820152606490fd5b84548352600194850194869450602090930192016105e2565b5081546001600160a01b031633146105ad565b50346102e257806003193601126102e257602060ff600554166040519015158152f35b50346102e25760203660031901126102e257600435906001548210156102e257602061045e83612b7f565b50346102e257806003193601126102e257546040516001600160a01b039091168152602090f35b50346102e257806003193601126102e2576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b50346102e257806003193601126102e2576108be612f25565b80546001600160a01b03198116825581906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b50346102e25760203660031901126102e2576004358015158091036102e05760207f1a3f40fae3a310ca113098ad34d161433ab7e470c2a167b60a190a80364043bc913384526003825260ff604085205416801561097a575b61096190612e05565b60ff196005541660ff821617600555604051908152a180f35b5083546001600160a01b03163314610958565b50346102e257806003193601126102e257338152600360205260ff6040822054168015610c99575b6109be90612e05565b6001546109ca81612e45565b906109d86040519283612a88565b808252601f196109e782612e45565b013660208401378290835b818110610c2f575083927f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169291505b818410610a35578480f35b6001600160a01b03610a478583612e69565b5116338652600360205260ff6040872054168015610c1c575b610a6990612e05565b85526002602052604085209160405180938491602082549182815201918952602089209089905b808210610c045750505090610aa6910384612a88565b82511561077a57855486906001600160a01b0316610ac385612e5c565b5190863b1561076b5760405163095ea7b360e01b81526001600160a01b0391909116600482015260248101919091528181604481838a5af1801561076f57610bef575b505b8351811015610be157610b1b8185612e69565b518754604051916001600160801b03916001600160a01b031690610b3e84612a57565b835260208301908152604080840183815260608501848152825163fc6f786560e01b81529551600487015292516001600160a01b03166024860152518316604485015290519091166064830152816084818b8a5af18015610bd657610ba7575b50600101610b08565b604090813d8111610bcf575b610bbd8183612a88565b81010312610bcb5738610b9e565b8680fd5b503d610bb3565b6040513d8a823e3d90fd5b506001909401939150610a2a565b81610bf991612a88565b6102d8578538610b06565b90919260016020819286548152019401920190610a90565b5085546001600160a01b03163314610a60565b610c3881612b7f565b905460039190911b1c6001600160a01b0316855260026020526040852054610c63575b6001016109f2565b91610c91600191610c7385612b7f565b848060a01b0391549060031b1c16610c8b8288612e69565b52612e7d565b929050610c5b565b5080546001600160a01b031633146109b5565b50346102e257806003193601126102e2576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b50346102e2576101003660031901126102e257610d0c612b0b565b906024356001600160401b0381116102e057610d2c903690600401612b21565b9290916044356001600160401b0381116102e057610d4e903690600401612b21565b94909360c4356001600160401b0381116102dc57610d70903690600401612b21565b94909360e435906001600160401b0382116102e2576020610db28a8a8a8a8a8a8a610d9e3660048d01612b21565b97909660a435946084359460643594612c52565b6040516001600160a01b039091168152f35b50346102e257806003193601126102e2576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b50346102e257806003193601126102e257602060405160c88152f35b50346102e257806003193601126102e2576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b50346102e25760203660031901126102e257610e84612b0b565b610e8c612f25565b6001600160a01b0381168083526003602052604083205490919060ff16610f4f57818352600360205260408320805460ff19166001179055600454600160401b811015610f3b5791610f31602092610f0d8560017fcb5d35f3d58007ab65c22252d42a544314d3bf8e16e71d153996fd99735653de97016004556004612b9a565b81546001600160a01b0393841660039290921b91821b9390911b1916919091179055565b604051908152a180f35b634e487b7160e01b84526041600452602484fd5b6001622d600560e11b03198352600483fd5b50346102e257806003193601126102e2576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b50346102e25760203660031901126102e257610fc0612b0b565b610fc8612f25565b6001600160a01b03168082526003602052604082205460ff161561111357808252600360205260408220805460ff19169055815b600454808210156110e8578261101183612b4e565b905460039190911b1c6001600160a01b0316146110315750600101610ffc565b60001981019081116110d45790610f0d61104d61106593612b4e565b905460039190911b1c6001600160a01b031691612b4e565b60045480156110c0577f113ac15d1e9d35bbc48c65ac66da9d44808929220056e22450b3c48222e8ec7391602091600019016110a081612b4e565b81549060018060a01b039060031b1b19169055600455604051908152a180f35b634e487b7160e01b83526031600452602483fd5b634e487b7160e01b84526011600452602484fd5b505060207f113ac15d1e9d35bbc48c65ac66da9d44808929220056e22450b3c48222e8ec7391610f31565b6306278fb360e21b8252600482fd5b506101603660031901126102e2576004356001600160401b0381116102e05761114f903690600401612ac4565b6024356001600160401b03811161076b5761116e903690600401612ac4565b9062ffffff608435166084350361076b5760c435906001600160a01b03821682036102dc57610124356001600160401b038111611e41576111b3903690600401612ac4565b90610144356001600160401b0381116102d8576111d4903690600401612ac4565b9160ff60055416156129e0576044351561299b576001600160a01b038416156129565781511561291a578451156128dc5761271062ffffff60843516036128a45780511561285f576101043534106128225760405192611267600a602086865161124381848401858b01612bb2565b81016910313c902632b9ba32b960b11b838201520301601519810187520185612a88565b670de0b6b3a7640000655af1e6795710611285606435604435612ea2565b050591878313156127f1576040516322afcccb60e01b815260843562ffffff1660048201526020816024817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa908115611f9d5789916127b1575b5060020b94851561279d5785620d89e80793627fffff8560020b620d89e80313627fffff198660020b620d89e80312176120bf5760020b627fffff1981146120bf578903958660020b81810760020b61276e575b50506040519161152391828401928484106001600160401b0385111761275a576114229261139261138487969461140f94612f4f89396101208652610120860190612bd5565b84810360208601528d612bd5565b60443560408501526001600160a01b038c811660608601527f0000000000000000000000000000000000000000000000000000000000000000811660808601527f00000000000000000000000000000000000000000000000000000000000000001660a085015260e43560c085015283810360e085015290612bd5565b9061010081830391015260a43594612bd5565b039088f5928315611d9d576001600160a01b037f00000000000000000000000000000000000000000000000000000000000000008116908516101561270957604051630b4c774160e11b81526001600160a01b0385811660048301527f000000000000000000000000000000000000000000000000000000000000000016602482015262ffffff608435166044820152602081806064810103817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa908115610bd65788916126ea575b5080888360020b126000146126e057600283900b600160ff1b146126cc578260020b8903905b620d89e882116126a3576001821615612691576001600160881b036ffffcb933bd6fad37aa2d162d1a5940015b169160028116612646575b600481166125fb575b600881166125b0575b60108116612565575b6020811661251a575b604081166124cf575b60808116612484575b6101008116612439575b61020081166123ee575b61040081166123a3575b6108008116612358575b611000811661230d575b61200081166122c2575b6140008116612277575b618000811661222c575b6201000081166121e1575b620200008116612199575b620400008116612140575b6208000016612101575b898460020b136120dc575b63ffffffff8260201c9216156000146120d35760ff8a5b1682018092116120bf576001600160a01b031615611fa8575b50604051630b4c774160e11b81526001600160a01b0386811660048301527f000000000000000000000000000000000000000000000000000000000000000016602482015262ffffff60843516604482015290602082806064810103817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa918215611f9d578992611f6c575b506001600160a01b039081169116819003611f345787906001600160a01b0386163b156102e05760405163e9e15b4f60e01b815260048101919091528181602481836001600160a01b038b165af1801561076f57611f1f575b505060405163095ea7b360e01b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811660048301526000196024830152602090829060449082908c908a165af18015610bd657611f02575b5060405163a9059cbb60e01b81523060048201526044803560248301526020908290818b6001600160a01b038a165af18015610bd657611ee5575b50603c420190814211611ed1576040519261016084018481106001600160401b03821117611ebd5790899160405260018060a01b0387168552602085019260018060a01b037f0000000000000000000000000000000000000000000000000000000000000000168452604086019162ffffff608435168352606087019160020b8252608087019060020b620d89e80360020b815260a0870190604435825260c088019285845262ffffff60e08a01958787526101008b019788526101208b0198308a526101408c019a8b526040519b634418b22b60e11b8d5260018060a01b0390511660048d015260018060a01b0390511660248c0152511660448a01525160020b60648901525160020b60848801525160a48701525160c48601525160e48501525161010484015260018060a01b0390511661012483015251610144820152608081610164818960018060a01b037f0000000000000000000000000000000000000000000000000000000000000000165af1908115611d9d578691611e76575b506001600160a01b0383168652600260205260408620805490600160401b821015611da8579061198391600182018155612b9a565b819291549060031b91821b91600019901b1916179055600154600160401b811015611e62576119bd8160016119dc93016001556001612b9a565b81546001600160a01b0386811660039390931b92831b921b1916179055565b60405163095ea7b360e01b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811660048301526000196024830152602090829060449082908a9088165af18015611d9d57611e45575b507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03163b15611e4157604051630d0e30db60e41b815285908181600481610104357f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165af1801561076f57611e2c575b505060405163095ea7b360e01b81527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b038116600483015261010435602483015290602081806044810103818a7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165af1908115611e21578791611df2575b5015611dbc5760405160e081018181106001600160401b03821117611da8579060209160405260018060a01b037f000000000000000000000000000000000000000000000000000000000000000016815260e48282019160018060a01b038716835289604082019562ffffff608435168752606083013381526080840161010435815260a085019084825260c086019285845262ffffff6040519b8c9a8b996304e45aaf60e01b8b5260018060a01b0390511660048b015260018060a01b0390511660248a01525116604488015260018060a01b0390511660648701525160848601525160a485015260018060a01b0390511660c484015260018060a01b03165af18015611d9d57611d69575b50610104353411611cd6575b7f6e6ae68e7d7d45fbd855c40d1eaafa8de46c5fbec3ee26f1af88730e400bc92c93611cba611cc89260405195869560018060a01b0316865260018060a01b0316602086015260a0604086015260a0850190612bd5565b908382036060850152612bd5565b60443560808301520390a180f35b610104353403348111611d55578580808093335af13d15611d50573d611cfb81612aa9565b90611d096040519283612a88565b81528660203d92013e5b611c635760405162461bcd60e51b8152602060048201526011602482015270115512081c99599d5b990819985a5b1959607a1b6044820152606490fd5b611d13565b634e487b7160e01b86526011600452602486fd5b6020813d602011611d95575b81611d8260209383612a88565b81010312611d905751611c57565b600080fd5b3d9150611d75565b6040513d88823e3d90fd5b634e487b7160e01b88526041600452602488fd5b60405162461bcd60e51b815260206004820152600e60248201526d105c1c1c9bdd994819985a5b195960921b6044820152606490fd5b611e14915060203d602011611e1a575b611e0c8183612a88565b810190612c19565b38611b4a565b503d611e02565b6040513d89823e3d90fd5b81611e3691612a88565b611e41578438611abc565b8480fd5b611e5d9060203d602011611e1a57611e0c8183612a88565b611a3c565b634e487b7160e01b86526041600452602486fd5b90506080813d608011611eb5575b81611e9160809383612a88565b810103126102d857602081519101516001600160801b038116036102d8573861194e565b3d9150611e84565b634e487b7160e01b8a52604160045260248afd5b634e487b7160e01b88526011600452602488fd5b611efd9060203d602011611e1a57611e0c8183612a88565b6117cd565b611f1a9060203d602011611e1a57611e0c8183612a88565b611792565b81611f2991612a88565b610bcb578638611730565b60405162461bcd60e51b815260206004820152601060248201526f141bdbdb081b9bdd0818dc99585d195960821b6044820152606490fd5b611f8f91925060203d602011611f96575b611f878183612a88565b810190612bfa565b90386116d7565b503d611f7d565b6040513d8b823e3d90fd5b60405163a167129560e01b81526001600160a01b0387811660048301527f000000000000000000000000000000000000000000000000000000000000000016602482015262ffffff6084351660448201529150889060208380606481010381857f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165af192831561076f57829361209e575b50826001600160a01b0381163b1561076b5760405163f637731d60e01b81526001600160a01b0392831660048201529291839160249183918591165af18015611f9d5715611640578861209791999299612a88565b9638611640565b6120b891935060203d602011611f9657611f878183612a88565b9138612042565b634e487b7160e01b8a52601160045260248afd5b60ff6001611627565b9080156120ed576000190490611610565b634e487b7160e01b8a52601260045260248afd5b90806b048a170391f7dc42444e8fa28102046b048a170391f7dc42444e8fa214811517156120bf576b048a170391f7dc42444e8fa20260801c90611605565b91806d2216e584f5fa1ea926041bedfe988102046d2216e584f5fa1ea926041bedfe981481151715612185576d2216e584f5fa1ea926041bedfe980260801c916115fb565b634e487b7160e01b8b52601160045260248bfd5b91806e5d6af8dedb81196699c329225ee6048102046e5d6af8dedb81196699c329225ee6041481151715612185576e5d6af8dedb81196699c329225ee6040260801c916115f0565b91806f09aa508b5b7a84e1c677de54f3e99bc98102046f09aa508b5b7a84e1c677de54f3e99bc91481151715612185576f09aa508b5b7a84e1c677de54f3e99bc90260801c916115e5565b91806f31be135f97d08fd981231505542fcfa68102046f31be135f97d08fd981231505542fcfa61481151715612185576f31be135f97d08fd981231505542fcfa60260801c916115da565b91806f70d869a156d2a1b890bb3df62baf32f78102046f70d869a156d2a1b890bb3df62baf32f71481151715612185576f70d869a156d2a1b890bb3df62baf32f70260801c916115d0565b91806fa9f746462d870fdf8a65dc1f90e061e58102046fa9f746462d870fdf8a65dc1f90e061e51481151715612185576fa9f746462d870fdf8a65dc1f90e061e50260801c916115c6565b91806fd097f3bdfd2022b8845ad8f792aa58258102046fd097f3bdfd2022b8845ad8f792aa58251481151715612185576fd097f3bdfd2022b8845ad8f792aa58250260801c916115bc565b91806fe7159475a2c29b7443b29c7fa6e889d98102046fe7159475a2c29b7443b29c7fa6e889d91481151715612185576fe7159475a2c29b7443b29c7fa6e889d90260801c916115b2565b91806ff3392b0822b70005940c7a398e4b70f38102046ff3392b0822b70005940c7a398e4b70f31481151715612185576ff3392b0822b70005940c7a398e4b70f30260801c916115a8565b91806ff987a7253ac413176f2b074cf7815e548102046ff987a7253ac413176f2b074cf7815e541481151715612185576ff987a7253ac413176f2b074cf7815e540260801c9161159e565b91806ffcbe86c7900a88aedcffc83b479aa3a48102046ffcbe86c7900a88aedcffc83b479aa3a41481151715612185576ffcbe86c7900a88aedcffc83b479aa3a40260801c91611594565b91806ffe5dee046a99a2a811c461f1969c30538102046ffe5dee046a99a2a811c461f1969c30531481151715612185576ffe5dee046a99a2a811c461f1969c30530260801c9161158a565b91806fff2ea16466c96a3843ec78b326b528618102046fff2ea16466c96a3843ec78b326b528611481151715612185576fff2ea16466c96a3843ec78b326b528610260801c91611581565b91806fff973b41fa98c081472e6896dfb254c08102046fff973b41fa98c081472e6896dfb254c01481151715612185576fff973b41fa98c081472e6896dfb254c00260801c91611578565b91806fffcb9843d60f6159c9db58835c9266448102046fffcb9843d60f6159c9db58835c9266441481151715612185576fffcb9843d60f6159c9db58835c9266440260801c9161156f565b91806fffe5caca7e10e4e61c3624eaa0941cd08102046fffe5caca7e10e4e61c3624eaa0941cd01481151715612185576fffe5caca7e10e4e61c3624eaa0941cd00260801c91611566565b91806ffff2e50f5f656932ef12357cf3c7fdcc8102046ffff2e50f5f656932ef12357cf3c7fdcc1481151715612185576ffff2e50f5f656932ef12357cf3c7fdcc0260801c9161155d565b91806ffff97272373d413259a46990580e213a8102046ffff97272373d413259a46990580e213a1481151715612185576ffff97272373d413259a46990580e213a0260801c91611554565b6001600160881b03600160801b611549565b60405162461bcd60e51b81526020600482015260016024820152601560fa1b6044820152606490fd5b634e487b7160e01b89526011600452602489fd5b8260020b9061151c565b612703915060203d602011611f9657611f878183612a88565b386114f6565b60405162461bcd60e51b8152602060048201526024808201527f546f6b656e2061646472657373206d757374206265206c657373207468616e206044820152630ae8aa8960e31b6064820152608490fd5b634e487b7160e01b8c52604160045260248cfd5b91965090627fffff1981146000198314166120bf5781900560020b028060020b9081036126cc5794388061133e565b634e487b7160e01b89526012600452602489fd5b90506020813d6020116127e9575b816127cc60209383612a88565b810103126127e557518060020b81036127e557386112ea565b8880fd5b3d91506127bf565b60405162461bcd60e51b815260206004820152600960248201526805072696365203c20360bc1b6044820152606490fd5b60405162461bcd60e51b8152602060048201526015602482015274125b9cdd59999a58da595b9d08115512081cd95b9d605a1b6044820152606490fd5b60405162461bcd60e51b815260206004820152601c60248201527f54776974746572206e616d652063616e6e6f7420626520656d707479000000006044820152606490fd5b60405162461bcd60e51b815260206004820152601060248201526f24b73b30b634b2103332b2903a34b2b960811b6044820152606490fd5b60405162461bcd60e51b815260206004820152601660248201527553796d626f6c2063616e6e6f7420626520656d70747960501b6044820152606490fd5b60405162461bcd60e51b81526020600482015260146024820152734e616d652063616e6e6f7420626520656d70747960601b6044820152606490fd5b60405162461bcd60e51b815260206004820152601860248201527f496e76616c6964206465706c6f796572206164647265737300000000000000006044820152606490fd5b60405162461bcd60e51b815260206004820152601d60248201527f537570706c79206d7573742062652067726561746572207468616e20300000006044820152606490fd5b60405162461bcd60e51b815260206004820152601a60248201527f546f6b656e206372656174696f6e2069732064697361626c65640000000000006044820152606490fd5b50346102e25760203660031901126102e25750604051670de0b6b3a7640000655af1e679571060043505058152602090f35b608081019081106001600160401b03821117612a7257604052565b634e487b7160e01b600052604160045260246000fd5b90601f801991011681019081106001600160401b03821117612a7257604052565b6001600160401b038111612a7257601f01601f191660200190565b81601f82011215611d9057803590612adb82612aa9565b92612ae96040519485612a88565b82845260208383010111611d9057816000926020809301838601378301015290565b600435906001600160a01b0382168203611d9057565b9181601f84011215611d90578235916001600160401b038311611d905760208381860195010111611d9057565b600454811015612b6957600460005260206000200190600090565b634e487b7160e01b600052603260045260246000fd5b600154811015612b6957600160005260206000200190600090565b8054821015612b695760005260206000200190600090565b60005b838110612bc55750506000910152565b8181015183820152602001612bb5565b90602091612bee81518092818552858086019101612bb2565b601f01601f1916010190565b90816020910312611d9057516001600160a01b0381168103611d905790565b90816020910312611d9057518015158103611d905790565b908060209392818452848401376000828201840152601f01601f1916010190565b979298909a93959a99949196998760405198899260208401378101602081016910313c902632b9ba32b960b11b90520360200160151981018852600a01612c999088612a88565b611523996040519860208c01612caf908b612a88565b8b8a5260208a019b612f4f8d396040519a8b9860208a019a6101208c526101408b01612cda91612bd5565b90601f198b83030160408c0152612cf092612c31565b60608901949094526001600160a01b0390811660808901527f0000000000000000000000000000000000000000000000000000000000000000811660a08901527f00000000000000000000000000000000000000000000000000000000000000001660c088015260e0870152858203601f1901610100870152612d7292612c31565b90601f1984830301610120850152612d8992612c31565b03601f1981018452612d9b9084612a88565b60405192839260208401958691518092612db492612bb2565b83019051918260208301612dc792612bb2565b0103808252612dd99060200182612a88565b519020906040519160408301526020820152308152600b0160ff8153605590206001600160a01b031690565b15612e0c57565b60405162461bcd60e51b81526020600482015260116024820152702737ba1030903a32b0b69036b2b6b132b960791b6044820152606490fd5b6001600160401b038111612a725760051b60200190565b805115612b695760200190565b8051821015612b695760209160051b010190565b6000198114612e8c5760010190565b634e487b7160e01b600052601160045260246000fd5b906040519163c43cb3fb60e01b83526004830152602482015260208160448173a1e439a765f42f9de43681dfa67b6a66f7907b7a5af4908115612f1957600091612eea575090565b90506020813d602011612f11575b81612f0560209383612a88565b81010312611d90575190565b3d9150612ef8565b6040513d6000823e3d90fd5b6000546001600160a01b03163303612f3957565b63118cdaa760e01b6000523360045260246000fdfe60c0604052346107b35761152380380380610019816107b8565b928339810190610120818303126107b35780516001600160401b0381116107b357826100469183016107dd565b60208201519091906001600160401b0381116107b357836100689183016107dd565b9060408101519161007b60608301610848565b61008760808401610848565b9061009460a08501610848565b9260c08501519460e081015160018060401b0381116107b357896100b99183016107dd565b6101008201519099906001600160401b0381116107b3576100da92016107dd565b875190976001600160401b0382116106b05760035490600182811c921680156107a9575b60208310146106905781601f849311610739575b50602090601f83116001146106d1576000926106c6575b50508160011b916000199060031b1c1916176003555b8051906001600160401b0382116106b05760045490600182811c921680156106a6575b60208310146106905781601f849311610620575b50602090601f83116001146105b8576000926105ad575b50508160011b916000199060031b1c1916176004555b6001600160a01b0316801561059757600580546001600160a01b03198116831790915581906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a360018060a01b031960065416176006553360018060a01b0319600754161760075560805260a05233156105815760009160025481810180911161056d576002553383528260205260408320818154019055604051908152827fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60203393a360095582516001600160401b03811161055957600b54600181811c9116801561054f575b602082101461053b57601f81116104d8575b506020601f82116001146104755782939482939261046a575b50508160011b916000199060031b1c191617600b555b8151906001600160401b03821161045657600c54600181811c9116801561044c575b602082101461043857601f81116103d5575b50602090601f831160011461037457919283610369575b50508160011b916000199060031b1c191617600c555b604051610cc6908161085d82396080518181816106070152610c1f015260a0518181816104e80152610bec0152f35b015190503880610324565b90601f19831693600c8352818320925b8581106103bd575083600195106103a4575b505050811b01600c5561033a565b015160001960f88460031b161c19169055388080610396565b91926020600181928685015181550194019201610384565b600c82527fdf6966c971051c3d54ec59162606531493a51404a002842f56009d7e5cf4a8c7601f840160051c8101916020851061042e575b601f0160051c01905b818110610423575061030d565b828155600101610416565b909150819061040d565b634e487b7160e01b82526022600452602482fd5b90607f16906102fb565b634e487b7160e01b81526041600452602490fd5b0151905038806102c3565b600b835280832090601f198316845b8181106104c0575095836001959697106104a7575b505050811b01600b556102d9565b015160001960f88460031b161c19169055388080610499565b9192602060018192868b015181550194019201610484565b600b83527f0175b7a638427703f0dbe7bb9bbf987a2551717b34e79f33b5b1008d1fa01db9601f830160051c81019160208410610531575b601f0160051c01905b81811061052657506102aa565b838155600101610519565b9091508190610510565b634e487b7160e01b83526022600452602483fd5b90607f1690610298565b634e487b7160e01b82526041600452602482fd5b634e487b7160e01b84526011600452602484fd5b63ec442f0560e01b600052600060045260246000fd5b631e4fbdf760e01b600052600060045260246000fd5b01519050388061018d565b600460009081528281209350601f198516905b81811061060857509084600195949392106105ef575b505050811b016004556101a3565b015160001960f88460031b161c191690553880806105e1565b929360206001819287860151815501950193016105cb565b60046000529091507f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b601f840160051c81019160208510610686575b90601f859493920160051c01905b8181106106775750610176565b6000815584935060010161066a565b909150819061065c565b634e487b7160e01b600052602260045260246000fd5b91607f1691610162565b634e487b7160e01b600052604160045260246000fd5b015190503880610129565b600360009081528281209350601f198516905b8181106107215750908460019594939210610708575b505050811b0160035561013f565b015160001960f88460031b161c191690553880806106fa565b929360206001819287860151815501950193016106e4565b60036000529091507fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b601f840160051c8101916020851061079f575b90601f859493920160051c01905b8181106107905750610112565b60008155849350600101610783565b9091508190610775565b91607f16916100fe565b600080fd5b6040519190601f01601f191682016001600160401b038111838210176106b057604052565b81601f820112156107b3578051906001600160401b0382116106b05761080c601f8301601f19166020016107b8565b92828452602083830101116107b35760005b82811061083357505060206000918301015290565b8060208092840101518282870101520161081e565b51906001600160a01b03821682036107b35756fe6080604052600436101561001257600080fd5b60003560e01c806306fdde031461092b578063095ea7b3146108a55780630d43e8ad1461087c5780631755ff211461085357806318160ddd1461083557806323b872dd14610748578063313ce5671461072c5780634d669f8714610654578063599ca397146106365780635b549182146105f15780635f438c5a146105c857806370a082311461058e578063715018a614610517578063791b98bc146104d25780638da5cb5b146104a957806395d89b41146103d1578063a9059cbb146103a0578063abb5ca091461027d578063d5f3948814610254578063dd62ed3e14610203578063e9e15b4f146101725763f2fde38b1461010e57600080fd5b3461016d57602036600319011261016d57610127610a4c565b5060405162461bcd60e51b815260206004820152601e60248201527f4f776e657273686970207472616e736665722069732064697361626c656400006044820152606490fd5b600080fd5b3461016d57602036600319011261016d5761018b610a4c565b6007546001600160a01b031633036101bf57600880546001600160a01b0319166001600160a01b0392909216919091179055005b606460405162461bcd60e51b815260206004820152602060248201527f4f6e6c79204c65737465722063616e2073657420706f6f6c20616464726573736044820152fd5b3461016d57604036600319011261016d5761021c610a4c565b610224610a62565b6001600160a01b039182166000908152600160209081526040808320949093168252928352819020549051908152f35b3461016d57600036600319011261016d576006546040516001600160a01b039091168152602090f35b3461016d57600036600319011261016d576040516000600c548060011c90600181168015610396575b60208310811461038257828552908115610366575060011461030f575b50819003601f01601f191681019067ffffffffffffffff8211818310176102f957604082905281906102f59082610a03565b0390f35b634e487b7160e01b600052604160045260246000fd5b600c60009081529091507fdf6966c971051c3d54ec59162606531493a51404a002842f56009d7e5cf4a8c75b828210610350575060209150820101826102c3565b600181602092548385880101520191019061033b565b90506020925060ff191682840152151560051b820101826102c3565b634e487b7160e01b84526022600452602484fd5b91607f16916102a6565b3461016d57604036600319011261016d576103c66103bc610a4c565b6024359033610a78565b602060405160018152f35b3461016d57600036600319011261016d5760405160006004548060011c9060018116801561049f575b6020831081146103825782855290811561036657506001146104485750819003601f01601f191681019067ffffffffffffffff8211818310176102f957604082905281906102f59082610a03565b600460009081529091507f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b5b828210610489575060209150820101826102c3565b6001816020925483858801015201910190610474565b91607f16916103fa565b3461016d57600036600319011261016d576005546040516001600160a01b039091168152602090f35b3461016d57600036600319011261016d576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461016d57600036600319011261016d576005546001600160a01b038116338103610579576000916bffffffffffffffffffffffff60a01b166005557f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b63118cdaa760e01b6000523360045260246000fd5b3461016d57602036600319011261016d576001600160a01b036105af610a4c565b1660005260006020526020604060002054604051908152f35b3461016d57600036600319011261016d576007546040516001600160a01b039091168152602090f35b3461016d57600036600319011261016d576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461016d57600036600319011261016d576020600954604051908152f35b3461016d57600036600319011261016d576040516000600b548060011c90600181168015610722575b6020831081146103825782855290811561036657506001146106cb5750819003601f01601f191681019067ffffffffffffffff8211818310176102f957604082905281906102f59082610a03565b600b60009081529091507f0175b7a638427703f0dbe7bb9bbf987a2551717b34e79f33b5b1008d1fa01db95b82821061070c575060209150820101826102c3565b60018160209254838588010152019101906106f7565b91607f169161067d565b3461016d57600036600319011261016d57602060405160128152f35b3461016d57606036600319011261016d57610761610a4c565b610769610a62565b6001600160a01b03821660008181526001602081815260408084203385529091529091205491936044359392909181016107a9575b506103c69350610a78565b8381106108185784156108025733156107ec576103c6946000526001602052604060002060018060a01b033316600052602052836040600020910390558461079e565b634a1406b160e11b600052600060045260246000fd5b63e602df0560e01b600052600060045260246000fd5b8390637dc7a0d960e11b6000523360045260245260445260646000fd5b3461016d57600036600319011261016d576020600254604051908152f35b3461016d57600036600319011261016d576008546040516001600160a01b039091168152602090f35b3461016d57600036600319011261016d57600a546040516001600160a01b039091168152602090f35b3461016d57604036600319011261016d576108be610a4c565b602435903315610802576001600160a01b03169081156107ec57336000526001602052604060002082600052602052806040600020556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b3461016d57600036600319011261016d5760405160006003548060011c906001811680156109f9575b6020831081146103825782855290811561036657506001146109a25750819003601f01601f191681019067ffffffffffffffff8211818310176102f957604082905281906102f59082610a03565b600360009081529091507fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5b8282106109e3575060209150820101826102c3565b60018160209254838588010152019101906109ce565b91607f1691610954565b91909160208152825180602083015260005b818110610a36575060409293506000838284010152601f8019910116010190565b8060208092870101516040828601015201610a15565b600435906001600160a01b038216820361016d57565b602435906001600160a01b038216820361016d57565b6001600160a01b0316908115610c7a576001600160a01b0316918215610c64576007546001600160a01b031683141580610c4f575b80610c1c575b80610be9575b80610bd4575b610b3d575b6000828152806020526040812054828110610b235791604082827fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef958760209652828652038282205586815280845220818154019055604051908152a3565b916064928463391434e360e21b8452600452602452604452fd5b60025460095490818102918183041490151715610bbe5783600052600060205260406000205490828201809211610bbe576103e890041015610ac45760405162461bcd60e51b815260206004820152601e60248201527f4d61782077616c6c65742070657263656e7461676520657863656564656400006044820152606490fd5b634e487b7160e01b600052601160045260246000fd5b506008546001600160a01b0316831415610abf565b507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316831415610ab9565b507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316831415610ab3565b506007546001600160a01b0316821415610aad565b63ec442f0560e01b600052600060045260246000fd5b634b637e8f60e11b600052600060045260246000fdfea26469706673582212203164054787ae8ee84b6a68f57d4dad5838b79c532963ea942aaf34a9d725685364736f6c634300081b0033a264697066735822122051bf944aaf1890692803dbe9f1973486abf5144b69cd99ce06237e5e9cad604364736f6c634300081b0033000000000000000000000000420000000000000000000000000000000000000600000000000000000000000033128a8fc17869897dce68ed026d694621f6fdfd00000000000000000000000003a520b32c04bf3beef7beb72e919cf822ed34f10000000000000000000000002626664c2603336e57b271c5c0b26f421741e481000000000000000000000000673fafcd2eb926c39cba9fef2a4c9749d74f3c86
Deployed Bytecode
0x6080604052600436101561001b575b361561001957600080fd5b005b6000803560e01c80630d9a444614612a2557806313a9e9d91461112257806314eba02614610fa65780633e413bee14610f615780633eb2b5ad14610e6a5780633fc8cef314610e2557806346ca626b14610e095780634e6fd6c414610dc4578063599b261e14610cf15780635b54918214610cac578063686f2c901461098d5780636a5dab9f146108ff578063715018a6146108a5578063791b98bc146108605780638da5cb5b146108395780639ead72221461080e578063a10b521b146107eb578063a480ca791461057c578063bbe9f99d1461053d578063c0dd7cd5146104e6578063c31c9c07146104a1578063c43cb3fb14610477578063e75f7ddb14610433578063efded1471461036b578063f2fde38b146102e55763fd8b3c9d14610145575061000e565b346102e25760e03660031901126102e25761015e612b0b565b906024356001600160401b0381116102e05761017e903690600401612b21565b916044356001600160401b0381116102e05761019e903690600401612b21565b92909360a4356001600160401b0381116102dc576101c0903690600401612b21565b92909160c435976001600160401b0389116102d8578261020a85899b98886101ee8d9c9b3690600401612b21565b9c819c848f969395509788915b608435938c606435938d612c52565b6001600160a01b037f0000000000000000000000004200000000000000000000000000000000000006811690821610806102cf575b6102b5575061024d90612e7d565b986103e88a10156102705761020a988a919a888888848f94959e958a8f966101fb565b60405162461bcd60e51b815260206004820152601960248201527f436f756c64206e6f742066696e642076616c69642073616c74000000000000006044820152606490fd5b604080519283526001600160a01b03909116602083015290f35b50803b1561023f565b8580fd5b8380fd5b505b80fd5b50346102e25760203660031901126102e2576102ff612b0b565b610307612f25565b6001600160a01b031680156103575781546001600160a01b03198116821783556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08380a380f35b631e4fbdf760e01b82526004829052602482fd5b50346102e257806003193601126102e25760405180602060045491828152018091600485527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b90855b81811061041457505050826103ca910383612a88565b604051928392602084019060208552518091526040840192915b8181106103f2575050500390f35b82516001600160a01b03168452859450602093840193909201916001016103e4565b82546001600160a01b03168452602090930192600192830192016103b4565b50346102e25760203660031901126102e257600435906004548210156102e257602061045e83612b4e565b905460405160039290921b1c6001600160a01b03168152f35b50346102e25760403660031901126102e2576020610499602435600435612ea2565b604051908152f35b50346102e257806003193601126102e2576040517f0000000000000000000000002626664c2603336e57b271c5c0b26f421741e4816001600160a01b03168152602090f35b50346102e25760403660031901126102e257610500612b0b565b6001600160a01b03168152600260205260408120805460243592908310156102e257602061052e8484612b9a565b90549060031b1c604051908152f35b50346102e25760203660031901126102e25760209060ff906040906001600160a01b03610568612b0b565b168152600384522054166040519015158152f35b50346102e25760203660031901126102e257610596612b0b565b338252600360205260ff60408320541680156107d8575b6105b690612e05565b60018060a01b031681526002602052604081206040518082602082945493848152019085526020852092855b8181106107bf5750506105f792500382612a88565b80511561077a5781546001600160a01b037f00000000000000000000000003a520b32c04bf3beef7beb72e919cf822ed34f181169184911661063884612e5c565b5190833b1561076b5760405163095ea7b360e01b81526001600160a01b039190911660048201526024810191909152818160448183875af1801561076f57610756575b505b8251811015610752576106908184612e69565b518454604051916001600160801b03916001600160a01b0316906106b384612a57565b835260208301908152604080840183815260608501848152825163fc6f786560e01b81529551600487015292516001600160a01b031660248601525183166044850152905190911660648301528160848188875af180156107475761071c575b5060010161067d565b604090813d8111610740575b6107328183612a88565b810103126102dc5738610713565b503d610728565b6040513d87823e3d90fd5b8380f35b8161076091612a88565b61076b57823861067b565b8280fd5b6040513d84823e3d90fd5b60405162461bcd60e51b815260206004820152601b60248201527f4e6f20706f736974696f6e7320666f72207468697320746f6b656e00000000006044820152606490fd5b84548352600194850194869450602090930192016105e2565b5081546001600160a01b031633146105ad565b50346102e257806003193601126102e257602060ff600554166040519015158152f35b50346102e25760203660031901126102e257600435906001548210156102e257602061045e83612b7f565b50346102e257806003193601126102e257546040516001600160a01b039091168152602090f35b50346102e257806003193601126102e2576040517f00000000000000000000000003a520b32c04bf3beef7beb72e919cf822ed34f16001600160a01b03168152602090f35b50346102e257806003193601126102e2576108be612f25565b80546001600160a01b03198116825581906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b50346102e25760203660031901126102e2576004358015158091036102e05760207f1a3f40fae3a310ca113098ad34d161433ab7e470c2a167b60a190a80364043bc913384526003825260ff604085205416801561097a575b61096190612e05565b60ff196005541660ff821617600555604051908152a180f35b5083546001600160a01b03163314610958565b50346102e257806003193601126102e257338152600360205260ff6040822054168015610c99575b6109be90612e05565b6001546109ca81612e45565b906109d86040519283612a88565b808252601f196109e782612e45565b013660208401378290835b818110610c2f575083927f00000000000000000000000003a520b32c04bf3beef7beb72e919cf822ed34f16001600160a01b03169291505b818410610a35578480f35b6001600160a01b03610a478583612e69565b5116338652600360205260ff6040872054168015610c1c575b610a6990612e05565b85526002602052604085209160405180938491602082549182815201918952602089209089905b808210610c045750505090610aa6910384612a88565b82511561077a57855486906001600160a01b0316610ac385612e5c565b5190863b1561076b5760405163095ea7b360e01b81526001600160a01b0391909116600482015260248101919091528181604481838a5af1801561076f57610bef575b505b8351811015610be157610b1b8185612e69565b518754604051916001600160801b03916001600160a01b031690610b3e84612a57565b835260208301908152604080840183815260608501848152825163fc6f786560e01b81529551600487015292516001600160a01b03166024860152518316604485015290519091166064830152816084818b8a5af18015610bd657610ba7575b50600101610b08565b604090813d8111610bcf575b610bbd8183612a88565b81010312610bcb5738610b9e565b8680fd5b503d610bb3565b6040513d8a823e3d90fd5b506001909401939150610a2a565b81610bf991612a88565b6102d8578538610b06565b90919260016020819286548152019401920190610a90565b5085546001600160a01b03163314610a60565b610c3881612b7f565b905460039190911b1c6001600160a01b0316855260026020526040852054610c63575b6001016109f2565b91610c91600191610c7385612b7f565b848060a01b0391549060031b1c16610c8b8288612e69565b52612e7d565b929050610c5b565b5080546001600160a01b031633146109b5565b50346102e257806003193601126102e2576040517f00000000000000000000000033128a8fc17869897dce68ed026d694621f6fdfd6001600160a01b03168152602090f35b50346102e2576101003660031901126102e257610d0c612b0b565b906024356001600160401b0381116102e057610d2c903690600401612b21565b9290916044356001600160401b0381116102e057610d4e903690600401612b21565b94909360c4356001600160401b0381116102dc57610d70903690600401612b21565b94909360e435906001600160401b0382116102e2576020610db28a8a8a8a8a8a8a610d9e3660048d01612b21565b97909660a435946084359460643594612c52565b6040516001600160a01b039091168152f35b50346102e257806003193601126102e2576040517f000000000000000000000000000000000000000000000000000000000000dead6001600160a01b03168152602090f35b50346102e257806003193601126102e257602060405160c88152f35b50346102e257806003193601126102e2576040517f00000000000000000000000042000000000000000000000000000000000000066001600160a01b03168152602090f35b50346102e25760203660031901126102e257610e84612b0b565b610e8c612f25565b6001600160a01b0381168083526003602052604083205490919060ff16610f4f57818352600360205260408320805460ff19166001179055600454600160401b811015610f3b5791610f31602092610f0d8560017fcb5d35f3d58007ab65c22252d42a544314d3bf8e16e71d153996fd99735653de97016004556004612b9a565b81546001600160a01b0393841660039290921b91821b9390911b1916919091179055565b604051908152a180f35b634e487b7160e01b84526041600452602484fd5b6001622d600560e11b03198352600483fd5b50346102e257806003193601126102e2576040517f000000000000000000000000833589fcd6edb6e08f4c7c32d4f71b54bda029136001600160a01b03168152602090f35b50346102e25760203660031901126102e257610fc0612b0b565b610fc8612f25565b6001600160a01b03168082526003602052604082205460ff161561111357808252600360205260408220805460ff19169055815b600454808210156110e8578261101183612b4e565b905460039190911b1c6001600160a01b0316146110315750600101610ffc565b60001981019081116110d45790610f0d61104d61106593612b4e565b905460039190911b1c6001600160a01b031691612b4e565b60045480156110c0577f113ac15d1e9d35bbc48c65ac66da9d44808929220056e22450b3c48222e8ec7391602091600019016110a081612b4e565b81549060018060a01b039060031b1b19169055600455604051908152a180f35b634e487b7160e01b83526031600452602483fd5b634e487b7160e01b84526011600452602484fd5b505060207f113ac15d1e9d35bbc48c65ac66da9d44808929220056e22450b3c48222e8ec7391610f31565b6306278fb360e21b8252600482fd5b506101603660031901126102e2576004356001600160401b0381116102e05761114f903690600401612ac4565b6024356001600160401b03811161076b5761116e903690600401612ac4565b9062ffffff608435166084350361076b5760c435906001600160a01b03821682036102dc57610124356001600160401b038111611e41576111b3903690600401612ac4565b90610144356001600160401b0381116102d8576111d4903690600401612ac4565b9160ff60055416156129e0576044351561299b576001600160a01b038416156129565781511561291a578451156128dc5761271062ffffff60843516036128a45780511561285f576101043534106128225760405192611267600a602086865161124381848401858b01612bb2565b81016910313c902632b9ba32b960b11b838201520301601519810187520185612a88565b670de0b6b3a7640000655af1e6795710611285606435604435612ea2565b050591878313156127f1576040516322afcccb60e01b815260843562ffffff1660048201526020816024817f00000000000000000000000033128a8fc17869897dce68ed026d694621f6fdfd6001600160a01b03165afa908115611f9d5789916127b1575b5060020b94851561279d5785620d89e80793627fffff8560020b620d89e80313627fffff198660020b620d89e80312176120bf5760020b627fffff1981146120bf578903958660020b81810760020b61276e575b50506040519161152391828401928484106001600160401b0385111761275a576114229261139261138487969461140f94612f4f89396101208652610120860190612bd5565b84810360208601528d612bd5565b60443560408501526001600160a01b038c811660608601527f00000000000000000000000033128a8fc17869897dce68ed026d694621f6fdfd811660808601527f00000000000000000000000003a520b32c04bf3beef7beb72e919cf822ed34f11660a085015260e43560c085015283810360e085015290612bd5565b9061010081830391015260a43594612bd5565b039088f5928315611d9d576001600160a01b037f00000000000000000000000042000000000000000000000000000000000000068116908516101561270957604051630b4c774160e11b81526001600160a01b0385811660048301527f000000000000000000000000420000000000000000000000000000000000000616602482015262ffffff608435166044820152602081806064810103817f00000000000000000000000033128a8fc17869897dce68ed026d694621f6fdfd6001600160a01b03165afa908115610bd65788916126ea575b5080888360020b126000146126e057600283900b600160ff1b146126cc578260020b8903905b620d89e882116126a3576001821615612691576001600160881b036ffffcb933bd6fad37aa2d162d1a5940015b169160028116612646575b600481166125fb575b600881166125b0575b60108116612565575b6020811661251a575b604081166124cf575b60808116612484575b6101008116612439575b61020081166123ee575b61040081166123a3575b6108008116612358575b611000811661230d575b61200081166122c2575b6140008116612277575b618000811661222c575b6201000081166121e1575b620200008116612199575b620400008116612140575b6208000016612101575b898460020b136120dc575b63ffffffff8260201c9216156000146120d35760ff8a5b1682018092116120bf576001600160a01b031615611fa8575b50604051630b4c774160e11b81526001600160a01b0386811660048301527f000000000000000000000000420000000000000000000000000000000000000616602482015262ffffff60843516604482015290602082806064810103817f00000000000000000000000033128a8fc17869897dce68ed026d694621f6fdfd6001600160a01b03165afa918215611f9d578992611f6c575b506001600160a01b039081169116819003611f345787906001600160a01b0386163b156102e05760405163e9e15b4f60e01b815260048101919091528181602481836001600160a01b038b165af1801561076f57611f1f575b505060405163095ea7b360e01b81526001600160a01b037f00000000000000000000000003a520b32c04bf3beef7beb72e919cf822ed34f1811660048301526000196024830152602090829060449082908c908a165af18015610bd657611f02575b5060405163a9059cbb60e01b81523060048201526044803560248301526020908290818b6001600160a01b038a165af18015610bd657611ee5575b50603c420190814211611ed1576040519261016084018481106001600160401b03821117611ebd5790899160405260018060a01b0387168552602085019260018060a01b037f0000000000000000000000004200000000000000000000000000000000000006168452604086019162ffffff608435168352606087019160020b8252608087019060020b620d89e80360020b815260a0870190604435825260c088019285845262ffffff60e08a01958787526101008b019788526101208b0198308a526101408c019a8b526040519b634418b22b60e11b8d5260018060a01b0390511660048d015260018060a01b0390511660248c0152511660448a01525160020b60648901525160020b60848801525160a48701525160c48601525160e48501525161010484015260018060a01b0390511661012483015251610144820152608081610164818960018060a01b037f00000000000000000000000003a520b32c04bf3beef7beb72e919cf822ed34f1165af1908115611d9d578691611e76575b506001600160a01b0383168652600260205260408620805490600160401b821015611da8579061198391600182018155612b9a565b819291549060031b91821b91600019901b1916179055600154600160401b811015611e62576119bd8160016119dc93016001556001612b9a565b81546001600160a01b0386811660039390931b92831b921b1916179055565b60405163095ea7b360e01b81526001600160a01b037f00000000000000000000000003a520b32c04bf3beef7beb72e919cf822ed34f1811660048301526000196024830152602090829060449082908a9088165af18015611d9d57611e45575b507f00000000000000000000000042000000000000000000000000000000000000066001600160a01b03163b15611e4157604051630d0e30db60e41b815285908181600481610104357f00000000000000000000000042000000000000000000000000000000000000066001600160a01b03165af1801561076f57611e2c575b505060405163095ea7b360e01b81527f0000000000000000000000002626664c2603336e57b271c5c0b26f421741e4816001600160a01b038116600483015261010435602483015290602081806044810103818a7f00000000000000000000000042000000000000000000000000000000000000066001600160a01b03165af1908115611e21578791611df2575b5015611dbc5760405160e081018181106001600160401b03821117611da8579060209160405260018060a01b037f000000000000000000000000420000000000000000000000000000000000000616815260e48282019160018060a01b038716835289604082019562ffffff608435168752606083013381526080840161010435815260a085019084825260c086019285845262ffffff6040519b8c9a8b996304e45aaf60e01b8b5260018060a01b0390511660048b015260018060a01b0390511660248a01525116604488015260018060a01b0390511660648701525160848601525160a485015260018060a01b0390511660c484015260018060a01b03165af18015611d9d57611d69575b50610104353411611cd6575b7f6e6ae68e7d7d45fbd855c40d1eaafa8de46c5fbec3ee26f1af88730e400bc92c93611cba611cc89260405195869560018060a01b0316865260018060a01b0316602086015260a0604086015260a0850190612bd5565b908382036060850152612bd5565b60443560808301520390a180f35b610104353403348111611d55578580808093335af13d15611d50573d611cfb81612aa9565b90611d096040519283612a88565b81528660203d92013e5b611c635760405162461bcd60e51b8152602060048201526011602482015270115512081c99599d5b990819985a5b1959607a1b6044820152606490fd5b611d13565b634e487b7160e01b86526011600452602486fd5b6020813d602011611d95575b81611d8260209383612a88565b81010312611d905751611c57565b600080fd5b3d9150611d75565b6040513d88823e3d90fd5b634e487b7160e01b88526041600452602488fd5b60405162461bcd60e51b815260206004820152600e60248201526d105c1c1c9bdd994819985a5b195960921b6044820152606490fd5b611e14915060203d602011611e1a575b611e0c8183612a88565b810190612c19565b38611b4a565b503d611e02565b6040513d89823e3d90fd5b81611e3691612a88565b611e41578438611abc565b8480fd5b611e5d9060203d602011611e1a57611e0c8183612a88565b611a3c565b634e487b7160e01b86526041600452602486fd5b90506080813d608011611eb5575b81611e9160809383612a88565b810103126102d857602081519101516001600160801b038116036102d8573861194e565b3d9150611e84565b634e487b7160e01b8a52604160045260248afd5b634e487b7160e01b88526011600452602488fd5b611efd9060203d602011611e1a57611e0c8183612a88565b6117cd565b611f1a9060203d602011611e1a57611e0c8183612a88565b611792565b81611f2991612a88565b610bcb578638611730565b60405162461bcd60e51b815260206004820152601060248201526f141bdbdb081b9bdd0818dc99585d195960821b6044820152606490fd5b611f8f91925060203d602011611f96575b611f878183612a88565b810190612bfa565b90386116d7565b503d611f7d565b6040513d8b823e3d90fd5b60405163a167129560e01b81526001600160a01b0387811660048301527f000000000000000000000000420000000000000000000000000000000000000616602482015262ffffff6084351660448201529150889060208380606481010381857f00000000000000000000000033128a8fc17869897dce68ed026d694621f6fdfd6001600160a01b03165af192831561076f57829361209e575b50826001600160a01b0381163b1561076b5760405163f637731d60e01b81526001600160a01b0392831660048201529291839160249183918591165af18015611f9d5715611640578861209791999299612a88565b9638611640565b6120b891935060203d602011611f9657611f878183612a88565b9138612042565b634e487b7160e01b8a52601160045260248afd5b60ff6001611627565b9080156120ed576000190490611610565b634e487b7160e01b8a52601260045260248afd5b90806b048a170391f7dc42444e8fa28102046b048a170391f7dc42444e8fa214811517156120bf576b048a170391f7dc42444e8fa20260801c90611605565b91806d2216e584f5fa1ea926041bedfe988102046d2216e584f5fa1ea926041bedfe981481151715612185576d2216e584f5fa1ea926041bedfe980260801c916115fb565b634e487b7160e01b8b52601160045260248bfd5b91806e5d6af8dedb81196699c329225ee6048102046e5d6af8dedb81196699c329225ee6041481151715612185576e5d6af8dedb81196699c329225ee6040260801c916115f0565b91806f09aa508b5b7a84e1c677de54f3e99bc98102046f09aa508b5b7a84e1c677de54f3e99bc91481151715612185576f09aa508b5b7a84e1c677de54f3e99bc90260801c916115e5565b91806f31be135f97d08fd981231505542fcfa68102046f31be135f97d08fd981231505542fcfa61481151715612185576f31be135f97d08fd981231505542fcfa60260801c916115da565b91806f70d869a156d2a1b890bb3df62baf32f78102046f70d869a156d2a1b890bb3df62baf32f71481151715612185576f70d869a156d2a1b890bb3df62baf32f70260801c916115d0565b91806fa9f746462d870fdf8a65dc1f90e061e58102046fa9f746462d870fdf8a65dc1f90e061e51481151715612185576fa9f746462d870fdf8a65dc1f90e061e50260801c916115c6565b91806fd097f3bdfd2022b8845ad8f792aa58258102046fd097f3bdfd2022b8845ad8f792aa58251481151715612185576fd097f3bdfd2022b8845ad8f792aa58250260801c916115bc565b91806fe7159475a2c29b7443b29c7fa6e889d98102046fe7159475a2c29b7443b29c7fa6e889d91481151715612185576fe7159475a2c29b7443b29c7fa6e889d90260801c916115b2565b91806ff3392b0822b70005940c7a398e4b70f38102046ff3392b0822b70005940c7a398e4b70f31481151715612185576ff3392b0822b70005940c7a398e4b70f30260801c916115a8565b91806ff987a7253ac413176f2b074cf7815e548102046ff987a7253ac413176f2b074cf7815e541481151715612185576ff987a7253ac413176f2b074cf7815e540260801c9161159e565b91806ffcbe86c7900a88aedcffc83b479aa3a48102046ffcbe86c7900a88aedcffc83b479aa3a41481151715612185576ffcbe86c7900a88aedcffc83b479aa3a40260801c91611594565b91806ffe5dee046a99a2a811c461f1969c30538102046ffe5dee046a99a2a811c461f1969c30531481151715612185576ffe5dee046a99a2a811c461f1969c30530260801c9161158a565b91806fff2ea16466c96a3843ec78b326b528618102046fff2ea16466c96a3843ec78b326b528611481151715612185576fff2ea16466c96a3843ec78b326b528610260801c91611581565b91806fff973b41fa98c081472e6896dfb254c08102046fff973b41fa98c081472e6896dfb254c01481151715612185576fff973b41fa98c081472e6896dfb254c00260801c91611578565b91806fffcb9843d60f6159c9db58835c9266448102046fffcb9843d60f6159c9db58835c9266441481151715612185576fffcb9843d60f6159c9db58835c9266440260801c9161156f565b91806fffe5caca7e10e4e61c3624eaa0941cd08102046fffe5caca7e10e4e61c3624eaa0941cd01481151715612185576fffe5caca7e10e4e61c3624eaa0941cd00260801c91611566565b91806ffff2e50f5f656932ef12357cf3c7fdcc8102046ffff2e50f5f656932ef12357cf3c7fdcc1481151715612185576ffff2e50f5f656932ef12357cf3c7fdcc0260801c9161155d565b91806ffff97272373d413259a46990580e213a8102046ffff97272373d413259a46990580e213a1481151715612185576ffff97272373d413259a46990580e213a0260801c91611554565b6001600160881b03600160801b611549565b60405162461bcd60e51b81526020600482015260016024820152601560fa1b6044820152606490fd5b634e487b7160e01b89526011600452602489fd5b8260020b9061151c565b612703915060203d602011611f9657611f878183612a88565b386114f6565b60405162461bcd60e51b8152602060048201526024808201527f546f6b656e2061646472657373206d757374206265206c657373207468616e206044820152630ae8aa8960e31b6064820152608490fd5b634e487b7160e01b8c52604160045260248cfd5b91965090627fffff1981146000198314166120bf5781900560020b028060020b9081036126cc5794388061133e565b634e487b7160e01b89526012600452602489fd5b90506020813d6020116127e9575b816127cc60209383612a88565b810103126127e557518060020b81036127e557386112ea565b8880fd5b3d91506127bf565b60405162461bcd60e51b815260206004820152600960248201526805072696365203c20360bc1b6044820152606490fd5b60405162461bcd60e51b8152602060048201526015602482015274125b9cdd59999a58da595b9d08115512081cd95b9d605a1b6044820152606490fd5b60405162461bcd60e51b815260206004820152601c60248201527f54776974746572206e616d652063616e6e6f7420626520656d707479000000006044820152606490fd5b60405162461bcd60e51b815260206004820152601060248201526f24b73b30b634b2103332b2903a34b2b960811b6044820152606490fd5b60405162461bcd60e51b815260206004820152601660248201527553796d626f6c2063616e6e6f7420626520656d70747960501b6044820152606490fd5b60405162461bcd60e51b81526020600482015260146024820152734e616d652063616e6e6f7420626520656d70747960601b6044820152606490fd5b60405162461bcd60e51b815260206004820152601860248201527f496e76616c6964206465706c6f796572206164647265737300000000000000006044820152606490fd5b60405162461bcd60e51b815260206004820152601d60248201527f537570706c79206d7573742062652067726561746572207468616e20300000006044820152606490fd5b60405162461bcd60e51b815260206004820152601a60248201527f546f6b656e206372656174696f6e2069732064697361626c65640000000000006044820152606490fd5b50346102e25760203660031901126102e25750604051670de0b6b3a7640000655af1e679571060043505058152602090f35b608081019081106001600160401b03821117612a7257604052565b634e487b7160e01b600052604160045260246000fd5b90601f801991011681019081106001600160401b03821117612a7257604052565b6001600160401b038111612a7257601f01601f191660200190565b81601f82011215611d9057803590612adb82612aa9565b92612ae96040519485612a88565b82845260208383010111611d9057816000926020809301838601378301015290565b600435906001600160a01b0382168203611d9057565b9181601f84011215611d90578235916001600160401b038311611d905760208381860195010111611d9057565b600454811015612b6957600460005260206000200190600090565b634e487b7160e01b600052603260045260246000fd5b600154811015612b6957600160005260206000200190600090565b8054821015612b695760005260206000200190600090565b60005b838110612bc55750506000910152565b8181015183820152602001612bb5565b90602091612bee81518092818552858086019101612bb2565b601f01601f1916010190565b90816020910312611d9057516001600160a01b0381168103611d905790565b90816020910312611d9057518015158103611d905790565b908060209392818452848401376000828201840152601f01601f1916010190565b979298909a93959a99949196998760405198899260208401378101602081016910313c902632b9ba32b960b11b90520360200160151981018852600a01612c999088612a88565b611523996040519860208c01612caf908b612a88565b8b8a5260208a019b612f4f8d396040519a8b9860208a019a6101208c526101408b01612cda91612bd5565b90601f198b83030160408c0152612cf092612c31565b60608901949094526001600160a01b0390811660808901527f00000000000000000000000033128a8fc17869897dce68ed026d694621f6fdfd811660a08901527f00000000000000000000000003a520b32c04bf3beef7beb72e919cf822ed34f11660c088015260e0870152858203601f1901610100870152612d7292612c31565b90601f1984830301610120850152612d8992612c31565b03601f1981018452612d9b9084612a88565b60405192839260208401958691518092612db492612bb2565b83019051918260208301612dc792612bb2565b0103808252612dd99060200182612a88565b519020906040519160408301526020820152308152600b0160ff8153605590206001600160a01b031690565b15612e0c57565b60405162461bcd60e51b81526020600482015260116024820152702737ba1030903a32b0b69036b2b6b132b960791b6044820152606490fd5b6001600160401b038111612a725760051b60200190565b805115612b695760200190565b8051821015612b695760209160051b010190565b6000198114612e8c5760010190565b634e487b7160e01b600052601160045260246000fd5b906040519163c43cb3fb60e01b83526004830152602482015260208160448173a1e439a765f42f9de43681dfa67b6a66f7907b7a5af4908115612f1957600091612eea575090565b90506020813d602011612f11575b81612f0560209383612a88565b81010312611d90575190565b3d9150612ef8565b6040513d6000823e3d90fd5b6000546001600160a01b03163303612f3957565b63118cdaa760e01b6000523360045260246000fdfe60c0604052346107b35761152380380380610019816107b8565b928339810190610120818303126107b35780516001600160401b0381116107b357826100469183016107dd565b60208201519091906001600160401b0381116107b357836100689183016107dd565b9060408101519161007b60608301610848565b61008760808401610848565b9061009460a08501610848565b9260c08501519460e081015160018060401b0381116107b357896100b99183016107dd565b6101008201519099906001600160401b0381116107b3576100da92016107dd565b875190976001600160401b0382116106b05760035490600182811c921680156107a9575b60208310146106905781601f849311610739575b50602090601f83116001146106d1576000926106c6575b50508160011b916000199060031b1c1916176003555b8051906001600160401b0382116106b05760045490600182811c921680156106a6575b60208310146106905781601f849311610620575b50602090601f83116001146105b8576000926105ad575b50508160011b916000199060031b1c1916176004555b6001600160a01b0316801561059757600580546001600160a01b03198116831790915581906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a360018060a01b031960065416176006553360018060a01b0319600754161760075560805260a05233156105815760009160025481810180911161056d576002553383528260205260408320818154019055604051908152827fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60203393a360095582516001600160401b03811161055957600b54600181811c9116801561054f575b602082101461053b57601f81116104d8575b506020601f82116001146104755782939482939261046a575b50508160011b916000199060031b1c191617600b555b8151906001600160401b03821161045657600c54600181811c9116801561044c575b602082101461043857601f81116103d5575b50602090601f831160011461037457919283610369575b50508160011b916000199060031b1c191617600c555b604051610cc6908161085d82396080518181816106070152610c1f015260a0518181816104e80152610bec0152f35b015190503880610324565b90601f19831693600c8352818320925b8581106103bd575083600195106103a4575b505050811b01600c5561033a565b015160001960f88460031b161c19169055388080610396565b91926020600181928685015181550194019201610384565b600c82527fdf6966c971051c3d54ec59162606531493a51404a002842f56009d7e5cf4a8c7601f840160051c8101916020851061042e575b601f0160051c01905b818110610423575061030d565b828155600101610416565b909150819061040d565b634e487b7160e01b82526022600452602482fd5b90607f16906102fb565b634e487b7160e01b81526041600452602490fd5b0151905038806102c3565b600b835280832090601f198316845b8181106104c0575095836001959697106104a7575b505050811b01600b556102d9565b015160001960f88460031b161c19169055388080610499565b9192602060018192868b015181550194019201610484565b600b83527f0175b7a638427703f0dbe7bb9bbf987a2551717b34e79f33b5b1008d1fa01db9601f830160051c81019160208410610531575b601f0160051c01905b81811061052657506102aa565b838155600101610519565b9091508190610510565b634e487b7160e01b83526022600452602483fd5b90607f1690610298565b634e487b7160e01b82526041600452602482fd5b634e487b7160e01b84526011600452602484fd5b63ec442f0560e01b600052600060045260246000fd5b631e4fbdf760e01b600052600060045260246000fd5b01519050388061018d565b600460009081528281209350601f198516905b81811061060857509084600195949392106105ef575b505050811b016004556101a3565b015160001960f88460031b161c191690553880806105e1565b929360206001819287860151815501950193016105cb565b60046000529091507f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b601f840160051c81019160208510610686575b90601f859493920160051c01905b8181106106775750610176565b6000815584935060010161066a565b909150819061065c565b634e487b7160e01b600052602260045260246000fd5b91607f1691610162565b634e487b7160e01b600052604160045260246000fd5b015190503880610129565b600360009081528281209350601f198516905b8181106107215750908460019594939210610708575b505050811b0160035561013f565b015160001960f88460031b161c191690553880806106fa565b929360206001819287860151815501950193016106e4565b60036000529091507fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b601f840160051c8101916020851061079f575b90601f859493920160051c01905b8181106107905750610112565b60008155849350600101610783565b9091508190610775565b91607f16916100fe565b600080fd5b6040519190601f01601f191682016001600160401b038111838210176106b057604052565b81601f820112156107b3578051906001600160401b0382116106b05761080c601f8301601f19166020016107b8565b92828452602083830101116107b35760005b82811061083357505060206000918301015290565b8060208092840101518282870101520161081e565b51906001600160a01b03821682036107b35756fe6080604052600436101561001257600080fd5b60003560e01c806306fdde031461092b578063095ea7b3146108a55780630d43e8ad1461087c5780631755ff211461085357806318160ddd1461083557806323b872dd14610748578063313ce5671461072c5780634d669f8714610654578063599ca397146106365780635b549182146105f15780635f438c5a146105c857806370a082311461058e578063715018a614610517578063791b98bc146104d25780638da5cb5b146104a957806395d89b41146103d1578063a9059cbb146103a0578063abb5ca091461027d578063d5f3948814610254578063dd62ed3e14610203578063e9e15b4f146101725763f2fde38b1461010e57600080fd5b3461016d57602036600319011261016d57610127610a4c565b5060405162461bcd60e51b815260206004820152601e60248201527f4f776e657273686970207472616e736665722069732064697361626c656400006044820152606490fd5b600080fd5b3461016d57602036600319011261016d5761018b610a4c565b6007546001600160a01b031633036101bf57600880546001600160a01b0319166001600160a01b0392909216919091179055005b606460405162461bcd60e51b815260206004820152602060248201527f4f6e6c79204c65737465722063616e2073657420706f6f6c20616464726573736044820152fd5b3461016d57604036600319011261016d5761021c610a4c565b610224610a62565b6001600160a01b039182166000908152600160209081526040808320949093168252928352819020549051908152f35b3461016d57600036600319011261016d576006546040516001600160a01b039091168152602090f35b3461016d57600036600319011261016d576040516000600c548060011c90600181168015610396575b60208310811461038257828552908115610366575060011461030f575b50819003601f01601f191681019067ffffffffffffffff8211818310176102f957604082905281906102f59082610a03565b0390f35b634e487b7160e01b600052604160045260246000fd5b600c60009081529091507fdf6966c971051c3d54ec59162606531493a51404a002842f56009d7e5cf4a8c75b828210610350575060209150820101826102c3565b600181602092548385880101520191019061033b565b90506020925060ff191682840152151560051b820101826102c3565b634e487b7160e01b84526022600452602484fd5b91607f16916102a6565b3461016d57604036600319011261016d576103c66103bc610a4c565b6024359033610a78565b602060405160018152f35b3461016d57600036600319011261016d5760405160006004548060011c9060018116801561049f575b6020831081146103825782855290811561036657506001146104485750819003601f01601f191681019067ffffffffffffffff8211818310176102f957604082905281906102f59082610a03565b600460009081529091507f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b5b828210610489575060209150820101826102c3565b6001816020925483858801015201910190610474565b91607f16916103fa565b3461016d57600036600319011261016d576005546040516001600160a01b039091168152602090f35b3461016d57600036600319011261016d576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461016d57600036600319011261016d576005546001600160a01b038116338103610579576000916bffffffffffffffffffffffff60a01b166005557f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b63118cdaa760e01b6000523360045260246000fd5b3461016d57602036600319011261016d576001600160a01b036105af610a4c565b1660005260006020526020604060002054604051908152f35b3461016d57600036600319011261016d576007546040516001600160a01b039091168152602090f35b3461016d57600036600319011261016d576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461016d57600036600319011261016d576020600954604051908152f35b3461016d57600036600319011261016d576040516000600b548060011c90600181168015610722575b6020831081146103825782855290811561036657506001146106cb5750819003601f01601f191681019067ffffffffffffffff8211818310176102f957604082905281906102f59082610a03565b600b60009081529091507f0175b7a638427703f0dbe7bb9bbf987a2551717b34e79f33b5b1008d1fa01db95b82821061070c575060209150820101826102c3565b60018160209254838588010152019101906106f7565b91607f169161067d565b3461016d57600036600319011261016d57602060405160128152f35b3461016d57606036600319011261016d57610761610a4c565b610769610a62565b6001600160a01b03821660008181526001602081815260408084203385529091529091205491936044359392909181016107a9575b506103c69350610a78565b8381106108185784156108025733156107ec576103c6946000526001602052604060002060018060a01b033316600052602052836040600020910390558461079e565b634a1406b160e11b600052600060045260246000fd5b63e602df0560e01b600052600060045260246000fd5b8390637dc7a0d960e11b6000523360045260245260445260646000fd5b3461016d57600036600319011261016d576020600254604051908152f35b3461016d57600036600319011261016d576008546040516001600160a01b039091168152602090f35b3461016d57600036600319011261016d57600a546040516001600160a01b039091168152602090f35b3461016d57604036600319011261016d576108be610a4c565b602435903315610802576001600160a01b03169081156107ec57336000526001602052604060002082600052602052806040600020556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b3461016d57600036600319011261016d5760405160006003548060011c906001811680156109f9575b6020831081146103825782855290811561036657506001146109a25750819003601f01601f191681019067ffffffffffffffff8211818310176102f957604082905281906102f59082610a03565b600360009081529091507fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5b8282106109e3575060209150820101826102c3565b60018160209254838588010152019101906109ce565b91607f1691610954565b91909160208152825180602083015260005b818110610a36575060409293506000838284010152601f8019910116010190565b8060208092870101516040828601015201610a15565b600435906001600160a01b038216820361016d57565b602435906001600160a01b038216820361016d57565b6001600160a01b0316908115610c7a576001600160a01b0316918215610c64576007546001600160a01b031683141580610c4f575b80610c1c575b80610be9575b80610bd4575b610b3d575b6000828152806020526040812054828110610b235791604082827fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef958760209652828652038282205586815280845220818154019055604051908152a3565b916064928463391434e360e21b8452600452602452604452fd5b60025460095490818102918183041490151715610bbe5783600052600060205260406000205490828201809211610bbe576103e890041015610ac45760405162461bcd60e51b815260206004820152601e60248201527f4d61782077616c6c65742070657263656e7461676520657863656564656400006044820152606490fd5b634e487b7160e01b600052601160045260246000fd5b506008546001600160a01b0316831415610abf565b507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316831415610ab9565b507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316831415610ab3565b506007546001600160a01b0316821415610aad565b63ec442f0560e01b600052600060045260246000fd5b634b637e8f60e11b600052600060045260246000fdfea26469706673582212203164054787ae8ee84b6a68f57d4dad5838b79c532963ea942aaf34a9d725685364736f6c634300081b0033a264697066735822122051bf944aaf1890692803dbe9f1973486abf5144b69cd99ce06237e5e9cad604364736f6c634300081b0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000420000000000000000000000000000000000000600000000000000000000000033128a8fc17869897dce68ed026d694621f6fdfd00000000000000000000000003a520b32c04bf3beef7beb72e919cf822ed34f10000000000000000000000002626664c2603336e57b271c5c0b26f421741e481000000000000000000000000673fafcd2eb926c39cba9fef2a4c9749d74f3c86
-----Decoded View---------------
Arg [0] : weth_ (address): 0x4200000000000000000000000000000000000006
Arg [1] : uniswapV3Factory_ (address): 0x33128a8fC17869897dcE68Ed026d694621f6FDfD
Arg [2] : positionManager_ (address): 0x03a520b32C04BF3bEEf7BEb72E919cf822Ed34f1
Arg [3] : swapRouter_ (address): 0x2626664c2603336E57B271c5C0b26F421741e481
Arg [4] : owner_ (address): 0x673faFcD2eb926c39CBa9Fef2a4c9749d74F3C86
-----Encoded View---------------
5 Constructor Arguments found :
Arg [0] : 0000000000000000000000004200000000000000000000000000000000000006
Arg [1] : 00000000000000000000000033128a8fc17869897dce68ed026d694621f6fdfd
Arg [2] : 00000000000000000000000003a520b32c04bf3beef7beb72e919cf822ed34f1
Arg [3] : 0000000000000000000000002626664c2603336e57b271c5c0b26f421741e481
Arg [4] : 000000000000000000000000673fafcd2eb926c39cba9fef2a4c9749d74f3c86
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in ETH
0
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.