Source Code
Latest 25 from a total of 153,418 transactions
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
| Start Via Rubic | 41303960 | 1 hr ago | IN | 0 ETH | 0.00000554 | ||||
| Start Via Rubic | 41303915 | 1 hr ago | IN | 0.007 ETH | 0.00000436 | ||||
| Start Via Rubic | 41302534 | 1 hr ago | IN | 0.0088 ETH | 0.00000734 | ||||
| Start Via Rubic | 41301507 | 2 hrs ago | IN | 3.11 ETH | 0.00000089 | ||||
| Start Via Rubic | 41290553 | 8 hrs ago | IN | 0 ETH | 0.00000431 | ||||
| Start Via Rubic | 41289307 | 9 hrs ago | IN | 0 ETH | 0.00002251 | ||||
| Start Via Rubic | 41286110 | 11 hrs ago | IN | 0 ETH | 0.00000231 | ||||
| Start Via Rubic | 41284538 | 11 hrs ago | IN | 0 ETH | 0.00000349 | ||||
| Start Via Rubic | 41284172 | 12 hrs ago | IN | 0 ETH | 0.00000384 | ||||
| Start Via Rubic | 41280701 | 14 hrs ago | IN | 0 ETH | 0.0000013 | ||||
| Start Via Rubic | 41280620 | 14 hrs ago | IN | 0 ETH | 0.00000157 | ||||
| Start Via Rubic | 41277524 | 15 hrs ago | IN | 0 ETH | 0.00000085 | ||||
| Start Via Rubic | 41277149 | 15 hrs ago | IN | 0 ETH | 0.0000041 | ||||
| Start Via Rubic | 41277040 | 16 hrs ago | IN | 0.00903218 ETH | 0.00000173 | ||||
| Start Via Rubic | 41276418 | 16 hrs ago | IN | 0.00031922 ETH | 0.00000513 | ||||
| Start Via Rubic | 41272442 | 18 hrs ago | IN | 0.00015 ETH | 0.00000057 | ||||
| Start Via Rubic | 41272394 | 18 hrs ago | IN | 0 ETH | 0.00000186 | ||||
| Start Via Rubic | 41270431 | 19 hrs ago | IN | 0.0081 ETH | 0.00000267 | ||||
| Start Via Rubic | 41269671 | 20 hrs ago | IN | 0.0053 ETH | 0.00000282 | ||||
| Start Via Rubic | 41265424 | 22 hrs ago | IN | 0.0209 ETH | 0.0000003 | ||||
| Start Via Rubic | 41263825 | 23 hrs ago | IN | 0.101 ETH | 0.00000161 | ||||
| Start Via Rubic | 41263769 | 23 hrs ago | IN | 0.008 ETH | 0.00000134 | ||||
| Start Via Rubic | 41263501 | 23 hrs ago | IN | 0.101 ETH | 0.00000188 | ||||
| Start Via Rubic | 41262791 | 23 hrs ago | IN | 0.029 ETH | 0.00000268 | ||||
| Start Via Rubic | 41260693 | 25 hrs ago | IN | 0.0077 ETH | 0.00000249 |
Latest 25 internal transactions (View All)
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 41303915 | 1 hr ago | 0.007 ETH | ||||
| 41302534 | 1 hr ago | 0.0088 ETH | ||||
| 41301507 | 2 hrs ago | 3.11 ETH | ||||
| 41277040 | 16 hrs ago | 0.00903218 ETH | ||||
| 41276418 | 16 hrs ago | 0.00031922 ETH | ||||
| 41272442 | 18 hrs ago | 0.00015 ETH | ||||
| 41270431 | 19 hrs ago | 0.0081 ETH | ||||
| 41269671 | 20 hrs ago | 0.0053 ETH | ||||
| 41265424 | 22 hrs ago | 0.0209 ETH | ||||
| 41263825 | 23 hrs ago | 0.101 ETH | ||||
| 41263769 | 23 hrs ago | 0.008 ETH | ||||
| 41263501 | 23 hrs ago | 0.101 ETH | ||||
| 41262791 | 23 hrs ago | 0.029 ETH | ||||
| 41260693 | 25 hrs ago | 0.0077 ETH | ||||
| 41259539 | 25 hrs ago | 0.0045 ETH | ||||
| 41255390 | 28 hrs ago | 0.001 ETH | ||||
| 41255045 | 28 hrs ago | 0.001 ETH | ||||
| 41250791 | 30 hrs ago | 0.0067 ETH | ||||
| 41244835 | 33 hrs ago | 0.00374135 ETH | ||||
| 41244572 | 34 hrs ago | 0.00224135 ETH | ||||
| 41244399 | 34 hrs ago | 0.00740135 ETH | ||||
| 41244091 | 34 hrs ago | 0.00124135 ETH | ||||
| 41240531 | 36 hrs ago | 0.00159377 ETH | ||||
| 41239298 | 37 hrs ago | 0.19807507 ETH | ||||
| 41237831 | 37 hrs ago | 0.00357556 ETH |
Cross-Chain Transactions
Loading...
Loading
Contract Name:
ERC20Proxy
Compiler Version
v0.8.17+commit.8df45f5f
Optimization Enabled:
Yes with 10000 runs
Other Settings:
london EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { LibAsset } from "../Libraries/LibAsset.sol";
import { LibUtil } from "../Libraries/LibUtil.sol";
import { ZeroAddress, LengthMissmatch, NotInitialized } from "../Errors/GenericErrors.sol";
/// @title ERC20 Proxy
/// @notice Proxy contract for safely transferring ERC20 tokens for swaps/executions
contract ERC20Proxy is Ownable {
/// Storage ///
address public diamond;
/// Events ///
event DiamondSet(address diamond);
/// Constructor
constructor(address _owner, address _diamond) {
transferOwnership(_owner);
diamond = _diamond;
}
function setDiamond(address _diamond) external onlyOwner {
if (_diamond == address(0)) revert ZeroAddress();
diamond = _diamond;
emit DiamondSet(_diamond);
}
/// @dev Transfers tokens from user to the diamond and calls it
/// @param tokens Addresses of tokens that should be sent to the diamond
/// @param amounts Corresponding amounts of tokens
/// @param facetCallData Calldata that should be passed to the diamond
/// Should contain any cross-chain related function
function startViaRubic(
address[] memory tokens,
uint256[] memory amounts,
bytes memory facetCallData
) external payable {
if (diamond == address(0)) revert NotInitialized();
uint256 tokensLength = tokens.length;
if (tokensLength != amounts.length) revert LengthMissmatch();
for (uint256 i = 0; i < tokensLength; ) {
LibAsset.transferFromERC20(
tokens[i],
msg.sender,
diamond,
amounts[i]
);
unchecked {
++i;
}
}
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory res) = diamond.call{ value: msg.value }(
facetCallData
);
if (!success) {
string memory reason = LibUtil.getRevertMsg(res);
revert(reason);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.17;
import { InsufficientBalance, NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeValueWithERC, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { ERC20Proxy } from "../Periphery/ERC20Proxy.sol";
import { LibSwap } from "./LibSwap.sol";
import { LibFees } from "./LibFees.sol";
/// @title LibAsset
/// @notice This library contains helpers for dealing with onchain transfers
/// of assets, including accounting for the native asset `assetId`
/// conventions and any noncompliant ERC20 transfers
library LibAsset {
uint256 private constant MAX_UINT = type(uint256).max;
address internal constant NULL_ADDRESS = address(0);
/// @dev All native assets use the empty address for their asset id
/// by convention
address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0)
/// @notice Gets the balance of the inheriting contract for the given asset
/// @param assetId The asset identifier to get the balance of
/// @return Balance held by contracts using this library
function getOwnBalance(address assetId) internal view returns (uint256) {
return
assetId == NATIVE_ASSETID
? address(this).balance
: IERC20(assetId).balanceOf(address(this));
}
/// @notice Transfers ether from the inheriting contract to a given
/// recipient
/// @param recipient Address to send ether to
/// @param amount Amount to send to given recipient
function transferNativeAsset(
address payable recipient,
uint256 amount
) internal {
if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress();
if (amount > address(this).balance)
revert InsufficientBalance(amount, address(this).balance);
// solhint-disable-next-line avoid-low-level-calls
(bool success, ) = recipient.call{ value: amount }("");
if (!success) revert NativeAssetTransferFailed();
}
/// @notice If the current allowance is insufficient, the allowance for a given spender
/// is set to MAX_UINT.
/// @param assetId Token address to transfer
/// @param spender Address to give spend approval to
/// @param amount Amount to approve for spending
function maxApproveERC20(
IERC20 assetId,
address spender,
uint256 amount
) internal {
if (address(assetId) == NATIVE_ASSETID) return;
if (spender == NULL_ADDRESS) revert NullAddrIsNotAValidSpender();
uint256 allowance = assetId.allowance(address(this), spender);
if (allowance < amount)
SafeERC20.safeIncreaseAllowance(
IERC20(assetId),
spender,
MAX_UINT - allowance
);
}
/// @notice Transfers tokens from the inheriting contract to a given
/// recipient
/// @param assetId Token address to transfer
/// @param recipient Address to send token to
/// @param amount Amount to send to given recipient
function transferERC20(
address assetId,
address recipient,
uint256 amount
) internal {
if (isNativeAsset(assetId)) revert NullAddrIsNotAnERC20Token();
uint256 assetBalance = IERC20(assetId).balanceOf(address(this));
if (amount > assetBalance)
revert InsufficientBalance(amount, assetBalance);
SafeERC20.safeTransfer(IERC20(assetId), recipient, amount);
}
/// @notice Transfers tokens from a sender to a given recipient
/// @param assetId Token address to transfer
/// @param from Address of sender/owner
/// @param to Address of recipient/spender
/// @param amount Amount to transfer from owner to spender
function transferFromERC20(
address assetId,
address from,
address to,
uint256 amount
) internal {
if (assetId == NATIVE_ASSETID) revert NullAddrIsNotAnERC20Token();
if (to == NULL_ADDRESS) revert NoTransferToNullAddress();
IERC20 asset = IERC20(assetId);
uint256 prevBalance = asset.balanceOf(to);
SafeERC20.safeTransferFrom(asset, from, to, amount);
if (asset.balanceOf(to) - prevBalance != amount)
revert InvalidAmount();
}
/// @dev Deposits asset for bridging and accrues fixed and token fees
/// @param assetId Address of asset to deposit
/// @param amount Amount of asset to bridge
/// @param extraNativeAmount Amount of native token to send to a bridge
/// @param integrator Integrator for whom to count the fees
/// @return amountWithoutFees Amount of tokens to bridge minus fees
function depositAssetAndAccrueFees(
address assetId,
uint256 amount,
uint256 extraNativeAmount,
address integrator
) internal returns (uint256 amountWithoutFees) {
uint256 accruedFixedNativeFee = LibFees.accrueFixedNativeFee(
integrator
);
// Check that msg value is at least greater than fixed native fee + extra fee sending to bridge
if (msg.value < accruedFixedNativeFee + extraNativeAmount)
revert InvalidAmount();
amountWithoutFees = _depositAndAccrueTokenFee(
assetId,
amount,
accruedFixedNativeFee,
extraNativeAmount,
integrator
);
}
/// @dev Deposits assets for each swap that requires and accrues fixed and token fees
/// @param swaps Array of swap datas
/// @param integrator Integrator for whom to count the fees
/// @return amountWithoutFees Array of swap datas with updated amounts
function depositAssetsAndAccrueFees(
LibSwap.SwapData[] memory swaps,
address integrator
) internal returns (LibSwap.SwapData[] memory) {
uint256 accruedFixedNativeFee = LibFees.accrueFixedNativeFee(
integrator
);
if (msg.value < accruedFixedNativeFee) revert InvalidAmount();
for (uint256 i = 0; i < swaps.length; ) {
LibSwap.SwapData memory swap = swaps[i];
if (swap.requiresDeposit) {
swap.fromAmount = _depositAndAccrueTokenFee(
swap.sendingAssetId,
swap.fromAmount,
accruedFixedNativeFee,
0,
integrator
);
}
swaps[i] = swap;
unchecked {
i++;
}
}
return swaps;
}
function _depositAndAccrueTokenFee(
address assetId,
uint256 amount,
uint256 accruedFixedNativeFee,
uint256 extraNativeAmount,
address integrator
) private returns (uint256 amountWithoutFees) {
if (isNativeAsset(assetId)) {
// Check that msg value greater than sending amount + fixed native fees + extra fees sending to bridge
if (msg.value < amount + accruedFixedNativeFee + extraNativeAmount)
revert InvalidAmount();
} else {
if (amount == 0) revert InvalidAmount();
uint256 balance = IERC20(assetId).balanceOf(address(this));
if (balance < amount) revert InsufficientBalance(amount, balance);
// getERC20proxy().transferFrom(
// assetId,
// msg.sender,
// address(this),
// amount
// );
}
amountWithoutFees = LibFees.accrueTokenFees(
integrator,
amount,
assetId
);
}
/// @notice Determines whether the given assetId is the native asset
/// @param assetId The asset identifier to evaluate
/// @return Boolean indicating if the asset is the native asset
function isNativeAsset(address assetId) internal pure returns (bool) {
return assetId == NATIVE_ASSETID;
}
/// @notice Wrapper function to transfer a given asset (native or erc20) to
/// some recipient. Should handle all non-compliant return value
/// tokens as well by using the SafeERC20 contract by open zeppelin.
/// @param assetId Asset id for transfer (address(0) for native asset,
/// token address for erc20s)
/// @param recipient Address to send asset to
/// @param amount Amount to send to given recipient
function transferAsset(
address assetId,
address payable recipient,
uint256 amount
) internal {
(assetId == NATIVE_ASSETID)
? transferNativeAsset(recipient, amount)
: transferERC20(assetId, recipient, amount);
}
/// @dev Checks whether the given address is a contract and contains code
function isContract(address _contractAddr) internal view returns (bool) {
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly {
size := extcodesize(_contractAddr)
}
return size > 0;
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
import "./LibBytes.sol";
library LibUtil {
using LibBytes for bytes;
function getRevertMsg(
bytes memory _res
) internal pure returns (string memory) {
if (_res.length < 68) return string(_res);
bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
return abi.decode(revertData, (string)); // All that remains is the revert string
}
/// @notice Determines whether the given address is the zero address
/// @param addr The address to verify
/// @return Boolean indicating if the address is the zero address
function isZeroAddress(address addr) internal pure returns (bool) {
return addr == address(0);
}
}// SPDX-License-Identifier: MIT pragma solidity 0.8.17; error TokenAddressIsZero(); error TokenNotSupported(); error CannotBridgeToSameNetwork(); error ZeroPostSwapBalance(); error NoSwapDataProvided(); error NativeValueWithERC(); error ContractCallNotAllowed(); error NullAddrIsNotAValidSpender(); error NullAddrIsNotAnERC20Token(); error NoTransferToNullAddress(); error NativeAssetTransferFailed(); error InvalidBridgeConfigLength(); error InvalidAmount(); error InvalidContract(); error InvalidConfig(); error UnsupportedChainId(uint256 chainId); error InvalidReceiver(); error InvalidDestinationChain(); error InvalidSendingToken(); error InvalidCaller(); error AlreadyInitialized(); error NotInitialized(); error OnlyContractOwner(); error CannotAuthoriseSelf(); error RecoveryAddressCannotBeZero(); error CannotDepositNativeToken(); error InvalidCallData(); error NativeAssetNotSupported(); error UnAuthorized(); error NoSwapFromZeroBalance(); error InvalidFallbackAddress(); error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount); error InsufficientBalance(uint256 required, uint256 balance); error ZeroAmount(); error ZeroAddress(); error InvalidFee(); error InformationMismatch(); error LengthMissmatch(); error NotAContract(); error NotEnoughBalance(uint256 requested, uint256 available); error InsufficientMessageValue(); error ExternalCallFailed(); error ReentrancyError();
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
import { LibAsset } from "./LibAsset.sol";
import { LibUtil } from "./LibUtil.sol";
import { InvalidContract, NoSwapFromZeroBalance, InsufficientBalance, UnAuthorized } from "../Errors/GenericErrors.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
library LibSwap {
struct SwapData {
address callTo;
address approveTo;
address sendingAssetId;
address receivingAssetId;
uint256 fromAmount;
bytes callData;
bool requiresDeposit;
}
event AssetSwapped(
bytes32 transactionId,
address dex,
address fromAssetId,
address toAssetId,
uint256 fromAmount,
uint256 toAmount,
uint256 timestamp
);
function swap(bytes32 transactionId, SwapData memory _swap) internal {
if (!LibAsset.isContract(_swap.callTo)) revert InvalidContract();
uint256 fromAmount = _swap.fromAmount;
if (fromAmount == 0) revert NoSwapFromZeroBalance();
uint256 nativeValue = LibAsset.isNativeAsset(_swap.sendingAssetId)
? _swap.fromAmount
: 0;
uint256 initialSendingAssetBalance = LibAsset.getOwnBalance(
_swap.sendingAssetId
);
uint256 initialReceivingAssetBalance = LibAsset.getOwnBalance(
_swap.receivingAssetId
);
if (nativeValue == 0) {
LibAsset.maxApproveERC20(
IERC20(_swap.sendingAssetId),
_swap.approveTo,
_swap.fromAmount
);
}
if (initialSendingAssetBalance < _swap.fromAmount) {
revert InsufficientBalance(
_swap.fromAmount,
initialSendingAssetBalance
);
}
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory res) = _swap.callTo.call{
value: nativeValue
}(_swap.callData);
if (!success) {
string memory reason = LibUtil.getRevertMsg(res);
revert(reason);
}
uint256 newBalance = LibAsset.getOwnBalance(_swap.receivingAssetId);
emit AssetSwapped(
transactionId,
_swap.callTo,
_swap.sendingAssetId,
_swap.receivingAssetId,
_swap.fromAmount,
newBalance > initialReceivingAssetBalance
? newBalance - initialReceivingAssetBalance
: newBalance,
block.timestamp
);
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
import { IFeesFacet } from "../Interfaces/IFeesFacet.sol";
import { LibUtil } from "../Libraries/LibUtil.sol";
import { FullMath } from "../Libraries/FullMath.sol";
import { LibAsset } from "../Libraries/LibAsset.sol";
/// Implementation of EIP-2535 Diamond Standard
/// https://eips.ethereum.org/EIPS/eip-2535
library LibFees {
bytes32 internal constant FFES_STORAGE_POSITION =
keccak256("rubic.library.fees.v2");
// Denominator for setting fees
uint256 internal constant DENOMINATOR = 1e6;
// ----------------
event FixedNativeFee(
uint256 RubicPart,
uint256 integratorPart,
address indexed integrator
);
event FixedNativeFeeCollected(uint256 amount, address collector);
event TokenFee(
uint256 RubicPart,
uint256 integratorPart,
address indexed integrator,
address token
);
event IntegratorTokenFeeCollected(
uint256 amount,
address indexed integrator,
address token
);
struct FeesStorage {
mapping(address => IFeesFacet.IntegratorFeeInfo) integratorToFeeInfo;
uint256 maxRubicPlatformFee; // sets while initialize
uint256 maxFixedNativeFee; // sets while initialize & cannot be changed
uint256 RubicPlatformFee;
// Rubic fixed fee for swap
uint256 fixedNativeFee;
address feeTreasure;
bool initialized;
}
function feesStorage() internal pure returns (FeesStorage storage fs) {
bytes32 position = FFES_STORAGE_POSITION;
// solhint-disable-next-line no-inline-assembly
assembly {
fs.slot := position
}
}
/**
* @dev Calculates and accrues fixed crypto fee
* @param _integrator Integrator's address if there is one
* @return The amount of fixedNativeFee
*/
function accrueFixedNativeFee(
address _integrator
) internal returns (uint256) {
uint256 _fixedNativeFee;
uint256 _RubicPart;
FeesStorage storage fs = feesStorage();
IFeesFacet.IntegratorFeeInfo memory _info = fs.integratorToFeeInfo[
_integrator
];
if (_info.isIntegrator) {
_fixedNativeFee = uint256(_info.fixedFeeAmount);
if (_fixedNativeFee > 0) {
_RubicPart =
(_fixedNativeFee * _info.RubicFixedCryptoShare) /
DENOMINATOR;
if (_fixedNativeFee - _RubicPart > 0)
LibAsset.transferNativeAsset(
payable(_integrator),
_fixedNativeFee - _RubicPart
);
}
} else {
_fixedNativeFee = fs.fixedNativeFee;
_RubicPart = _fixedNativeFee;
}
if (_RubicPart > 0)
LibAsset.transferNativeAsset(payable(fs.feeTreasure), _RubicPart);
emit FixedNativeFee(
_RubicPart,
_fixedNativeFee - _RubicPart,
_integrator
);
return _fixedNativeFee;
}
/**
* @dev Calculates token fees and accrues them
* @param _integrator Integrator's address if there is one
* @param _amountWithFee Total amount passed by the user
* @param _token The token in which the fees are collected
* @return Amount of tokens without fee
*/
function accrueTokenFees(
address _integrator,
uint256 _amountWithFee,
address _token
) internal returns (uint256) {
FeesStorage storage fs = feesStorage();
IFeesFacet.IntegratorFeeInfo memory _info = fs.integratorToFeeInfo[
_integrator
];
(uint256 _totalFees, uint256 _RubicFee) = _calculateFee(
fs,
_amountWithFee,
_info
);
if (_integrator != address(0)) {
if (_totalFees - _RubicFee > 0)
LibAsset.transferAsset(
_token,
payable(_integrator),
_totalFees - _RubicFee
);
}
if (_RubicFee > 0)
LibAsset.transferAsset(_token, payable(fs.feeTreasure), _RubicFee);
emit TokenFee(_RubicFee, _totalFees - _RubicFee, _integrator, _token);
return _amountWithFee - _totalFees;
}
/// PRIVATE ///
/**
* @dev Calculates fee amount for integrator and rubic, used in architecture
* @param _amountWithFee the users initial amount
* @param _info the struct with data about integrator
* @return _totalFee the amount of Rubic + integrator fee
* @return _RubicFee the amount of Rubic fee only
*/
function _calculateFeeWithIntegrator(
uint256 _amountWithFee,
IFeesFacet.IntegratorFeeInfo memory _info
) private pure returns (uint256 _totalFee, uint256 _RubicFee) {
if (_info.tokenFee > 0) {
_totalFee = FullMath.mulDiv(
_amountWithFee,
_info.tokenFee,
DENOMINATOR
);
_RubicFee = FullMath.mulDiv(
_totalFee,
_info.RubicTokenShare,
DENOMINATOR
);
}
}
function _calculateFee(
FeesStorage storage _fs,
uint256 _amountWithFee,
IFeesFacet.IntegratorFeeInfo memory _info
) internal view returns (uint256 _totalFee, uint256 _RubicFee) {
if (_info.isIntegrator) {
(_totalFee, _RubicFee) = _calculateFeeWithIntegrator(
_amountWithFee,
_info
);
} else {
_totalFee = FullMath.mulDiv(
_amountWithFee,
_fs.RubicPlatformFee,
DENOMINATOR
);
_RubicFee = _totalFee;
}
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
library LibBytes {
// solhint-disable no-inline-assembly
// LibBytes specific errors
error SliceOverflow();
error SliceOutOfBounds();
error AddressOutOfBounds();
error UintOutOfBounds();
// -------------------------
function concat(
bytes memory _preBytes,
bytes memory _postBytes
) internal pure returns (bytes memory) {
bytes memory tempBytes;
assembly {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// Store the length of the first bytes array at the beginning of
// the memory for tempBytes.
let length := mload(_preBytes)
mstore(tempBytes, length)
// Maintain a memory counter for the current write location in the
// temp bytes array by adding the 32 bytes for the array length to
// the starting location.
let mc := add(tempBytes, 0x20)
// Stop copying when the memory counter reaches the length of the
// first bytes array.
let end := add(mc, length)
for {
// Initialize a copy counter to the start of the _preBytes data,
// 32 bytes into its memory.
let cc := add(_preBytes, 0x20)
} lt(mc, end) {
// Increase both counters by 32 bytes each iteration.
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// Write the _preBytes data into the tempBytes memory 32 bytes
// at a time.
mstore(mc, mload(cc))
}
// Add the length of _postBytes to the current length of tempBytes
// and store it as the new length in the first 32 bytes of the
// tempBytes memory.
length := mload(_postBytes)
mstore(tempBytes, add(length, mload(tempBytes)))
// Move the memory counter back from a multiple of 0x20 to the
// actual end of the _preBytes data.
mc := end
// Stop copying when the memory counter reaches the new combined
// length of the arrays.
end := add(mc, length)
for {
let cc := add(_postBytes, 0x20)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
// Update the free-memory pointer by padding our last write location
// to 32 bytes: add 31 bytes to the end of tempBytes to move to the
// next 32 byte block, then round down to the nearest multiple of
// 32. If the sum of the length of the two arrays is zero then add
// one before rounding down to leave a blank 32 bytes (the length block with 0).
mstore(
0x40,
and(
add(add(end, iszero(add(length, mload(_preBytes)))), 31),
not(31) // Round down to the nearest 32 bytes.
)
)
}
return tempBytes;
}
function concatStorage(
bytes storage _preBytes,
bytes memory _postBytes
) internal {
assembly {
// Read the first 32 bytes of _preBytes storage, which is the length
// of the array. (We don't need to use the offset into the slot
// because arrays use the entire slot.)
let fslot := sload(_preBytes.slot)
// Arrays of 31 bytes or less have an even value in their slot,
// while longer arrays have an odd value. The actual length is
// the slot divided by two for odd values, and the lowest order
// byte divided by two for even values.
// If the slot is even, bitwise and the slot with 255 and divide by
// two to get the length. If the slot is odd, bitwise and the slot
// with -1 and divide by two.
let slength := div(
and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)),
2
)
let mlength := mload(_postBytes)
let newlength := add(slength, mlength)
// slength can contain both the length and contents of the array
// if length < 32 bytes so let's prepare for that
// v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
switch add(lt(slength, 32), lt(newlength, 32))
case 2 {
// Since the new array still fits in the slot, we just need to
// update the contents of the slot.
// uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
sstore(
_preBytes.slot,
// all the modifications to the slot are inside this
// next block
add(
// we can just add to the slot contents because the
// bytes we want to change are the LSBs
fslot,
add(
mul(
div(
// load the bytes from memory
mload(add(_postBytes, 0x20)),
// zero all bytes to the right
exp(0x100, sub(32, mlength))
),
// and now shift left the number of bytes to
// leave space for the length in the slot
exp(0x100, sub(32, newlength))
),
// increase length by the double of the memory
// bytes length
mul(mlength, 2)
)
)
)
}
case 1 {
// The stored value fits in the slot, but the combined value
// will exceed it.
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
let sc := add(keccak256(0x0, 0x20), div(slength, 32))
// save new length
sstore(_preBytes.slot, add(mul(newlength, 2), 1))
// The contents of the _postBytes array start 32 bytes into
// the structure. Our first read should obtain the `submod`
// bytes that can fit into the unused space in the last word
// of the stored array. To get this, we read 32 bytes starting
// from `submod`, so the data we read overlaps with the array
// contents by `submod` bytes. Masking the lowest-order
// `submod` bytes allows us to add that value directly to the
// stored value.
let submod := sub(32, slength)
let mc := add(_postBytes, submod)
let end := add(_postBytes, mlength)
let mask := sub(exp(0x100, submod), 1)
sstore(
sc,
add(
and(
fslot,
0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00
),
and(mload(mc), mask)
)
)
for {
mc := add(mc, 0x20)
sc := add(sc, 1)
} lt(mc, end) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
sstore(sc, mload(mc))
}
mask := exp(0x100, sub(mc, end))
sstore(sc, mul(div(mload(mc), mask), mask))
}
default {
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
// Start copying to the last used word of the stored array.
let sc := add(keccak256(0x0, 0x20), div(slength, 32))
// save new length
sstore(_preBytes.slot, add(mul(newlength, 2), 1))
// Copy over the first `submod` bytes of the new data as in
// case 1 above.
let slengthmod := mod(slength, 32)
let submod := sub(32, slengthmod)
let mc := add(_postBytes, submod)
let end := add(_postBytes, mlength)
let mask := sub(exp(0x100, submod), 1)
sstore(sc, add(sload(sc), and(mload(mc), mask)))
for {
sc := add(sc, 1)
mc := add(mc, 0x20)
} lt(mc, end) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
sstore(sc, mload(mc))
}
mask := exp(0x100, sub(mc, end))
sstore(sc, mul(div(mload(mc), mask), mask))
}
}
}
function slice(
bytes memory _bytes,
uint256 _start,
uint256 _length
) internal pure returns (bytes memory) {
if (_length + 31 < _length) revert SliceOverflow();
if (_bytes.length < _start + _length) revert SliceOutOfBounds();
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(
add(tempBytes, lengthmod),
mul(0x20, iszero(lengthmod))
)
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(
add(
add(_bytes, lengthmod),
mul(0x20, iszero(lengthmod))
),
_start
)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function toAddress(
bytes memory _bytes,
uint256 _start
) internal pure returns (address) {
if (_bytes.length < _start + 20) {
revert AddressOutOfBounds();
}
address tempAddress;
assembly {
tempAddress := div(
mload(add(add(_bytes, 0x20), _start)),
0x1000000000000000000000000
)
}
return tempAddress;
}
function toUint8(
bytes memory _bytes,
uint256 _start
) internal pure returns (uint8) {
if (_bytes.length < _start + 1) {
revert UintOutOfBounds();
}
uint8 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x1), _start))
}
return tempUint;
}
function toUint16(
bytes memory _bytes,
uint256 _start
) internal pure returns (uint16) {
if (_bytes.length < _start + 2) {
revert UintOutOfBounds();
}
uint16 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x2), _start))
}
return tempUint;
}
function toUint32(
bytes memory _bytes,
uint256 _start
) internal pure returns (uint32) {
if (_bytes.length < _start + 4) {
revert UintOutOfBounds();
}
uint32 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x4), _start))
}
return tempUint;
}
function toUint64(
bytes memory _bytes,
uint256 _start
) internal pure returns (uint64) {
if (_bytes.length < _start + 8) {
revert UintOutOfBounds();
}
uint64 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x8), _start))
}
return tempUint;
}
function toUint96(
bytes memory _bytes,
uint256 _start
) internal pure returns (uint96) {
if (_bytes.length < _start + 12) {
revert UintOutOfBounds();
}
uint96 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0xc), _start))
}
return tempUint;
}
function toUint128(
bytes memory _bytes,
uint256 _start
) internal pure returns (uint128) {
if (_bytes.length < _start + 16) {
revert UintOutOfBounds();
}
uint128 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x10), _start))
}
return tempUint;
}
function toUint256(
bytes memory _bytes,
uint256 _start
) internal pure returns (uint256) {
if (_bytes.length < _start + 32) {
revert UintOutOfBounds();
}
uint256 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x20), _start))
}
return tempUint;
}
function toBytes32(
bytes memory _bytes,
uint256 _start
) internal pure returns (bytes32) {
if (_bytes.length < _start + 32) {
revert UintOutOfBounds();
}
bytes32 tempBytes32;
assembly {
tempBytes32 := mload(add(add(_bytes, 0x20), _start))
}
return tempBytes32;
}
function equal(
bytes memory _preBytes,
bytes memory _postBytes
) internal pure returns (bool) {
bool success = true;
assembly {
let length := mload(_preBytes)
// if lengths don't match the arrays are not equal
switch eq(length, mload(_postBytes))
case 1 {
// cb is a circuit breaker in the for loop since there's
// no said feature for inline assembly loops
// cb = 1 - don't breaker
// cb = 0 - break
let cb := 1
let mc := add(_preBytes, 0x20)
let end := add(mc, length)
for {
let cc := add(_postBytes, 0x20)
// the next line is the loop condition:
// while(uint256(mc < end) + cb == 2)
} eq(add(lt(mc, end), cb), 2) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// if any of these checks fails then arrays are not equal
if iszero(eq(mload(mc), mload(cc))) {
// unsuccess:
success := 0
cb := 0
}
}
}
default {
// unsuccess:
success := 0
}
}
return success;
}
function equalStorage(
bytes storage _preBytes,
bytes memory _postBytes
) internal view returns (bool) {
bool success = true;
assembly {
// we know _preBytes_offset is 0
let fslot := sload(_preBytes.slot)
// Decode the length of the stored array like in concatStorage().
let slength := div(
and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)),
2
)
let mlength := mload(_postBytes)
// if lengths don't match the arrays are not equal
switch eq(slength, mlength)
case 1 {
// slength can contain both the length and contents of the array
// if length < 32 bytes so let's prepare for that
// v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
if iszero(iszero(slength)) {
switch lt(slength, 32)
case 1 {
// blank the last byte which is the length
fslot := mul(div(fslot, 0x100), 0x100)
if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
// unsuccess:
success := 0
}
}
default {
// cb is a circuit breaker in the for loop since there's
// no said feature for inline assembly loops
// cb = 1 - don't breaker
// cb = 0 - break
let cb := 1
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
let sc := keccak256(0x0, 0x20)
let mc := add(_postBytes, 0x20)
let end := add(mc, mlength)
// the next line is the loop condition:
// while(uint256(mc < end) + cb == 2)
// solhint-disable-next-line no-empty-blocks
for {
} eq(add(lt(mc, end), cb), 2) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
if iszero(eq(sload(sc), mload(mc))) {
// unsuccess:
success := 0
cb := 0
}
}
}
}
}
default {
// unsuccess:
success := 0
}
}
return success;
}
function getFirst4Bytes(
bytes memory data
) internal pure returns (bytes4 outBytes4) {
if (data.length == 0) {
return 0x0;
}
assembly {
outBytes4 := mload(add(data, 32))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
interface IFeesFacet {
struct IntegratorFeeInfo {
bool isIntegrator; // flag for setting 0 fees for integrator - 1 byte
uint32 tokenFee; // total fee percent gathered from user - 4 bytes
uint32 RubicTokenShare; // token share of platform commission - 4 bytes
uint32 RubicFixedCryptoShare; // native share of fixed commission - 4 bytes
uint128 fixedFeeAmount; // custom fixed fee amount - 16 bytes
}
/**
* @dev Initializes the FeesFacet with treasury address and max fee amount
* No need to check initialized status because if max fee is 0 than there is no token fees
* @param _feeTreasure Address to send fees to
* @param _maxRubicPlatformFee Max value of Tubic token fees
*/
function initialize(
address _feeTreasure,
uint256 _maxRubicPlatformFee,
uint256 _maxFixedNativeFee
) external;
/**
* @dev Sets fee info associated with an integrator
* @param _integrator Address of the integrator
* @param _info Struct with fee info
*/
function setIntegratorInfo(
address _integrator,
IntegratorFeeInfo memory _info
) external;
/**
* @dev Sets address of the treasure
* @param _feeTreasure Address of the treasure
*/
function setFeeTreasure(address _feeTreasure) external;
/**
* @dev Sets fixed crypto fee
* @param _fixedNativeFee Fixed crypto fee
*/
function setFixedNativeFee(uint256 _fixedNativeFee) external;
/**
* @dev Sets Rubic token fee
* @notice Cannot be higher than limit set only by an admin
* @param _platformFee Fixed crypto fee
*/
function setRubicPlatformFee(uint256 _platformFee) external;
/**
* @dev Sets the limit of Rubic token fee
* @param _maxFee The limit
*/
function setMaxRubicPlatformFee(uint256 _maxFee) external;
/// VIEW FUNCTIONS ///
function calcTokenFees(
uint256 _amount,
address _integrator
)
external
view
returns (uint256 totalFee, uint256 RubicFee, uint256 integratorFee);
function fixedNativeFee() external view returns (uint256 _fixedNativeFee);
function RubicPlatformFee()
external
view
returns (uint256 _RubicPlatformFee);
function maxRubicPlatformFee()
external
view
returns (uint256 _maxRubicPlatformFee);
function maxFixedNativeFee()
external
view
returns (uint256 _maxFixedNativeFee);
function feeTreasure() external view returns (address feeTreasure);
function integratorToFeeInfo(
address _integrator
) external view returns (IFeesFacet.IntegratorFeeInfo memory _info);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;
/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
function mulDiv(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = a * b
// Compute the product mod 2**256 and mod 2**256 - 1
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(a, b, not(0))
prod0 := mul(a, b)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
require(denominator > 0);
assembly {
result := div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256.
// Also prevents denominator == 0
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0]
// Compute remainder using mulmod
uint256 remainder;
assembly {
remainder := mulmod(a, b, denominator)
}
// Subtract 256 bit number from 512 bit number
assembly {
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator
// Compute largest power of two divisor of denominator.
// Always >= 1.
uint256 twos = (0 - denominator) & denominator;
// Divide denominator by power of two
assembly {
denominator := div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of two
assembly {
prod0 := div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need
// to flip `twos` such that it is 2**256 / twos.
// If twos is zero, then it becomes one
assembly {
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
// Invert denominator mod 2**256
// Now that denominator is an odd number, it has an inverse
// modulo 2**256 such that denominator * inv = 1 mod 2**256.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, denominator * inv = 1 mod 2**4
uint256 inv = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv *= 2 - denominator * inv; // inverse mod 2**8
inv *= 2 - denominator * inv; // inverse mod 2**16
inv *= 2 - denominator * inv; // inverse mod 2**32
inv *= 2 - denominator * inv; // inverse mod 2**64
inv *= 2 - denominator * inv; // inverse mod 2**128
inv *= 2 - denominator * inv; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying
// with the modular inverse of denominator. This will give us the
// correct result modulo 2**256. Since the precoditions guarantee
// that the outcome is less than 2**256, this is the final result.
// We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inv;
return result;
}
}
}{
"remappings": [
"@axelar-network/=node_modules/@axelar-network/",
"@connext/=node_modules/@connext/",
"@eth-optimism/=node_modules/@eth-optimism/",
"@openzeppelin/=node_modules/@openzeppelin/",
"@uniswap/=node_modules/@uniswap/",
"celer-network/=lib/sgn-v2-contracts/",
"create3-factory/=lib/create3-factory/src/",
"ds-test/=lib/ds-test/src/",
"eth-gas-reporter/=node_modules/eth-gas-reporter/",
"forge-std/=lib/forge-std/src/",
"hardhat-deploy/=node_modules/hardhat-deploy/",
"hardhat/=node_modules/hardhat/",
"rubic/=src/",
"sgn-v2-contracts/=lib/sgn-v2-contracts/contracts/",
"solmate/=lib/solmate/src/",
"test/=test/"
],
"optimizer": {
"enabled": true,
"runs": 10000
},
"metadata": {
"bytecodeHash": "ipfs"
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "london",
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_diamond","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidAmount","type":"error"},{"inputs":[],"name":"LengthMissmatch","type":"error"},{"inputs":[],"name":"NoTransferToNullAddress","type":"error"},{"inputs":[],"name":"NotInitialized","type":"error"},{"inputs":[],"name":"NullAddrIsNotAnERC20Token","type":"error"},{"inputs":[],"name":"SliceOutOfBounds","type":"error"},{"inputs":[],"name":"SliceOverflow","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"diamond","type":"address"}],"name":"DiamondSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"diamond","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_diamond","type":"address"}],"name":"setDiamond","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"bytes","name":"facetCallData","type":"bytes"}],"name":"startViaRubic","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
60806040523480156200001157600080fd5b50604051620013b4380380620013b48339810160408190526200003491620001bf565b6200003f3362000071565b6200004a82620000c1565b600180546001600160a01b0319166001600160a01b039290921691909117905550620001f7565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b620000cb62000144565b6001600160a01b038116620001365760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084015b60405180910390fd5b620001418162000071565b50565b6000546001600160a01b03163314620001a05760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016200012d565b565b80516001600160a01b0381168114620001ba57600080fd5b919050565b60008060408385031215620001d357600080fd5b620001de83620001a2565b9150620001ee60208401620001a2565b90509250929050565b6111ad80620002076000396000f3fe6080604052600436106100655760003560e01c8063e1fcde8e11610043578063e1fcde8e146100f1578063f0b7db4e14610104578063f2fde38b1461013157600080fd5b8063715018a61461006a57806376ed535a146100815780638da5cb5b146100a1575b600080fd5b34801561007657600080fd5b5061007f610151565b005b34801561008d57600080fd5b5061007f61009c366004610d07565b610165565b3480156100ad57600080fd5b5060005473ffffffffffffffffffffffffffffffffffffffff165b60405173ffffffffffffffffffffffffffffffffffffffff909116815260200160405180910390f35b61007f6100ff366004610ec6565b610233565b34801561011057600080fd5b506001546100c89073ffffffffffffffffffffffffffffffffffffffff1681565b34801561013d57600080fd5b5061007f61014c366004610d07565b610401565b6101596104b8565b6101636000610539565b565b61016d6104b8565b73ffffffffffffffffffffffffffffffffffffffff81166101ba576040517fd92e233d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600180547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081179091556040519081527fc2c7b6f89581aaed297b266b8b7687a221c3bbb4fadafb49df5e5d0a1fdea4ab9060200160405180910390a150565b60015473ffffffffffffffffffffffffffffffffffffffff16610282576040517f87138d5c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8251825181146102be576040517fd4e105db00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60005b81811015610331576103298582815181106102de576102de610faa565b602002602001015133600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1687858151811061031c5761031c610faa565b60200260200101516105ae565b6001016102c1565b50600154604051600091829173ffffffffffffffffffffffffffffffffffffffff909116903490610363908790610ffd565b60006040518083038185875af1925050503d80600081146103a0576040519150601f19603f3d011682016040523d82523d6000602084013e6103a5565b606091505b5091509150816103f95760006103ba826107c0565b9050806040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016103f09190611019565b60405180910390fd5b505050505050565b6104096104b8565b73ffffffffffffffffffffffffffffffffffffffff81166104ac576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f646472657373000000000000000000000000000000000000000000000000000060648201526084016103f0565b6104b581610539565b50565b60005473ffffffffffffffffffffffffffffffffffffffff163314610163576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016103f0565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b73ffffffffffffffffffffffffffffffffffffffff84166105fb576040517fd1bebf0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b73ffffffffffffffffffffffffffffffffffffffff8216610648576040517f21f7434500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff838116600483015285916000918316906370a0823190602401602060405180830381865afa1580156106b9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106dd919061106a565b90506106eb82868686610809565b6040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8581166004830152849183918516906370a0823190602401602060405180830381865afa15801561075b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061077f919061106a565b61078991906110b2565b146103f9576040517f2c5211c600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60606044825110156107d0575090565b60006107ec60048085516107e491906110b2565b8591906108a4565b90508080602001905181019061080291906110cb565b9392505050565b6040805173ffffffffffffffffffffffffffffffffffffffff85811660248301528416604482015260648082018490528251808303909101815260849091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f23b872dd0000000000000000000000000000000000000000000000000000000017905261089e9085906109be565b50505050565b6060816108b281601f611142565b10156108ea576040517f47aaf07a00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6108f48284611142565b8451101561092e576040517f3b99b53d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60608215801561094d57604051915060008252602082016040526109b5565b6040519150601f8416801560200281840101858101878315602002848b0101015b8183101561098657805183526020928301920161096e565b5050858452601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016604052505b50949350505050565b6000610a20826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c65648152508573ffffffffffffffffffffffffffffffffffffffff16610acf9092919063ffffffff16565b805190915015610aca5780806020019051810190610a3e9190611155565b610aca576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f7420737563636565640000000000000000000000000000000000000000000060648201526084016103f0565b505050565b6060610ade8484600085610ae6565b949350505050565b606082471015610b78576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60448201527f722063616c6c000000000000000000000000000000000000000000000000000060648201526084016103f0565b6000808673ffffffffffffffffffffffffffffffffffffffff168587604051610ba19190610ffd565b60006040518083038185875af1925050503d8060008114610bde576040519150601f19603f3d011682016040523d82523d6000602084013e610be3565b606091505b5091509150610bf487838387610bff565b979650505050505050565b60608315610c95578251600003610c8e5773ffffffffffffffffffffffffffffffffffffffff85163b610c8e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e747261637400000060448201526064016103f0565b5081610ade565b610ade8383815115610caa5781518083602001fd5b806040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016103f09190611019565b803573ffffffffffffffffffffffffffffffffffffffff81168114610d0257600080fd5b919050565b600060208284031215610d1957600080fd5b61080282610cde565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810167ffffffffffffffff81118282101715610d9857610d98610d22565b604052919050565b600067ffffffffffffffff821115610dba57610dba610d22565b5060051b60200190565b600082601f830112610dd557600080fd5b81356020610dea610de583610da0565b610d51565b82815260059290921b84018101918181019086841115610e0957600080fd5b8286015b84811015610e245780358352918301918301610e0d565b509695505050505050565b600067ffffffffffffffff821115610e4957610e49610d22565b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b600082601f830112610e8657600080fd5b8135610e94610de582610e2f565b818152846020838601011115610ea957600080fd5b816020850160208301376000918101602001919091529392505050565b600080600060608486031215610edb57600080fd5b833567ffffffffffffffff80821115610ef357600080fd5b818601915086601f830112610f0757600080fd5b81356020610f17610de583610da0565b82815260059290921b8401810191818101908a841115610f3657600080fd5b948201945b83861015610f5b57610f4c86610cde565b82529482019490820190610f3b565b97505087013592505080821115610f7157600080fd5b610f7d87838801610dc4565b93506040860135915080821115610f9357600080fd5b50610fa086828701610e75565b9150509250925092565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b60005b83811015610ff4578181015183820152602001610fdc565b50506000910152565b6000825161100f818460208701610fd9565b9190910192915050565b6020815260008251806020840152611038816040850160208701610fd9565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169190910160400192915050565b60006020828403121561107c57600080fd5b5051919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b818103818111156110c5576110c5611083565b92915050565b6000602082840312156110dd57600080fd5b815167ffffffffffffffff8111156110f457600080fd5b8201601f8101841361110557600080fd5b8051611113610de582610e2f565b81815285602083850101111561112857600080fd5b611139826020830160208601610fd9565b95945050505050565b808201808211156110c5576110c5611083565b60006020828403121561116757600080fd5b8151801515811461080257600080fdfea2646970667358221220293639de8e087a2ea23e51c02795f8d7bdecb2fac191896db522165ae9e80f2c64736f6c6343000811003300000000000000000000000000009cc27c811a3e0fdd2fd737afcc721b67ee8e000000000000000000000000af14797ccf963b1e3d028a9d51853ace16aedba1
Deployed Bytecode
0x6080604052600436106100655760003560e01c8063e1fcde8e11610043578063e1fcde8e146100f1578063f0b7db4e14610104578063f2fde38b1461013157600080fd5b8063715018a61461006a57806376ed535a146100815780638da5cb5b146100a1575b600080fd5b34801561007657600080fd5b5061007f610151565b005b34801561008d57600080fd5b5061007f61009c366004610d07565b610165565b3480156100ad57600080fd5b5060005473ffffffffffffffffffffffffffffffffffffffff165b60405173ffffffffffffffffffffffffffffffffffffffff909116815260200160405180910390f35b61007f6100ff366004610ec6565b610233565b34801561011057600080fd5b506001546100c89073ffffffffffffffffffffffffffffffffffffffff1681565b34801561013d57600080fd5b5061007f61014c366004610d07565b610401565b6101596104b8565b6101636000610539565b565b61016d6104b8565b73ffffffffffffffffffffffffffffffffffffffff81166101ba576040517fd92e233d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600180547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081179091556040519081527fc2c7b6f89581aaed297b266b8b7687a221c3bbb4fadafb49df5e5d0a1fdea4ab9060200160405180910390a150565b60015473ffffffffffffffffffffffffffffffffffffffff16610282576040517f87138d5c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8251825181146102be576040517fd4e105db00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60005b81811015610331576103298582815181106102de576102de610faa565b602002602001015133600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1687858151811061031c5761031c610faa565b60200260200101516105ae565b6001016102c1565b50600154604051600091829173ffffffffffffffffffffffffffffffffffffffff909116903490610363908790610ffd565b60006040518083038185875af1925050503d80600081146103a0576040519150601f19603f3d011682016040523d82523d6000602084013e6103a5565b606091505b5091509150816103f95760006103ba826107c0565b9050806040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016103f09190611019565b60405180910390fd5b505050505050565b6104096104b8565b73ffffffffffffffffffffffffffffffffffffffff81166104ac576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f646472657373000000000000000000000000000000000000000000000000000060648201526084016103f0565b6104b581610539565b50565b60005473ffffffffffffffffffffffffffffffffffffffff163314610163576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016103f0565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b73ffffffffffffffffffffffffffffffffffffffff84166105fb576040517fd1bebf0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b73ffffffffffffffffffffffffffffffffffffffff8216610648576040517f21f7434500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff838116600483015285916000918316906370a0823190602401602060405180830381865afa1580156106b9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106dd919061106a565b90506106eb82868686610809565b6040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8581166004830152849183918516906370a0823190602401602060405180830381865afa15801561075b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061077f919061106a565b61078991906110b2565b146103f9576040517f2c5211c600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60606044825110156107d0575090565b60006107ec60048085516107e491906110b2565b8591906108a4565b90508080602001905181019061080291906110cb565b9392505050565b6040805173ffffffffffffffffffffffffffffffffffffffff85811660248301528416604482015260648082018490528251808303909101815260849091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f23b872dd0000000000000000000000000000000000000000000000000000000017905261089e9085906109be565b50505050565b6060816108b281601f611142565b10156108ea576040517f47aaf07a00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6108f48284611142565b8451101561092e576040517f3b99b53d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60608215801561094d57604051915060008252602082016040526109b5565b6040519150601f8416801560200281840101858101878315602002848b0101015b8183101561098657805183526020928301920161096e565b5050858452601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016604052505b50949350505050565b6000610a20826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c65648152508573ffffffffffffffffffffffffffffffffffffffff16610acf9092919063ffffffff16565b805190915015610aca5780806020019051810190610a3e9190611155565b610aca576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f7420737563636565640000000000000000000000000000000000000000000060648201526084016103f0565b505050565b6060610ade8484600085610ae6565b949350505050565b606082471015610b78576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60448201527f722063616c6c000000000000000000000000000000000000000000000000000060648201526084016103f0565b6000808673ffffffffffffffffffffffffffffffffffffffff168587604051610ba19190610ffd565b60006040518083038185875af1925050503d8060008114610bde576040519150601f19603f3d011682016040523d82523d6000602084013e610be3565b606091505b5091509150610bf487838387610bff565b979650505050505050565b60608315610c95578251600003610c8e5773ffffffffffffffffffffffffffffffffffffffff85163b610c8e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e747261637400000060448201526064016103f0565b5081610ade565b610ade8383815115610caa5781518083602001fd5b806040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016103f09190611019565b803573ffffffffffffffffffffffffffffffffffffffff81168114610d0257600080fd5b919050565b600060208284031215610d1957600080fd5b61080282610cde565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810167ffffffffffffffff81118282101715610d9857610d98610d22565b604052919050565b600067ffffffffffffffff821115610dba57610dba610d22565b5060051b60200190565b600082601f830112610dd557600080fd5b81356020610dea610de583610da0565b610d51565b82815260059290921b84018101918181019086841115610e0957600080fd5b8286015b84811015610e245780358352918301918301610e0d565b509695505050505050565b600067ffffffffffffffff821115610e4957610e49610d22565b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b600082601f830112610e8657600080fd5b8135610e94610de582610e2f565b818152846020838601011115610ea957600080fd5b816020850160208301376000918101602001919091529392505050565b600080600060608486031215610edb57600080fd5b833567ffffffffffffffff80821115610ef357600080fd5b818601915086601f830112610f0757600080fd5b81356020610f17610de583610da0565b82815260059290921b8401810191818101908a841115610f3657600080fd5b948201945b83861015610f5b57610f4c86610cde565b82529482019490820190610f3b565b97505087013592505080821115610f7157600080fd5b610f7d87838801610dc4565b93506040860135915080821115610f9357600080fd5b50610fa086828701610e75565b9150509250925092565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b60005b83811015610ff4578181015183820152602001610fdc565b50506000910152565b6000825161100f818460208701610fd9565b9190910192915050565b6020815260008251806020840152611038816040850160208701610fd9565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169190910160400192915050565b60006020828403121561107c57600080fd5b5051919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b818103818111156110c5576110c5611083565b92915050565b6000602082840312156110dd57600080fd5b815167ffffffffffffffff8111156110f457600080fd5b8201601f8101841361110557600080fd5b8051611113610de582610e2f565b81815285602083850101111561112857600080fd5b611139826020830160208601610fd9565b95945050505050565b808201808211156110c5576110c5611083565b60006020828403121561116757600080fd5b8151801515811461080257600080fdfea2646970667358221220293639de8e087a2ea23e51c02795f8d7bdecb2fac191896db522165ae9e80f2c64736f6c63430008110033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000000009cc27c811a3e0fdd2fd737afcc721b67ee8e000000000000000000000000af14797ccf963b1e3d028a9d51853ace16aedba1
-----Decoded View---------------
Arg [0] : _owner (address): 0x00009cc27c811a3e0FdD2Fd737afCc721B67eE8e
Arg [1] : _diamond (address): 0xAf14797CcF963B1e3d028a9d51853acE16aedBA1
-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 00000000000000000000000000009cc27c811a3e0fdd2fd737afcc721b67ee8e
Arg [1] : 000000000000000000000000af14797ccf963b1e3d028a9d51853ace16aedba1
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$29.40
Net Worth in ETH
0.010297
Token Allocations
USDC
40.93%
BNB
23.53%
SHIB
16.84%
Others
18.69%
Multichain Portfolio | 35 Chains
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.